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Abstract

This paper proposes a thermodynamic reinterpretation of gravity,
motion, and time, while preserving the structural integrity of Ein-
stein’s field equations. Rather than viewing gravity as an attractive
force, we define it as a spatial convergence tendency arising from local
entropy flow. Under this view, what is commonly perceived as grav-
itational force is shown to correspond to inertial equilibrium, while
deviations from it emerge as action–reaction interactions between sys-
tems. The mass concept is revised: instead of treating mass as a scalar
with unclear density and volume, we define motion using a mass ratio
(R = m1/m2) and barycentric distance.

We derive a velocity equation based solely on orbital period and
mass ratio, requiring no gravitational constant (G), and verify its pre-
dictive power against real systems—Earth–Moon, Solar System–Galactic
Center, VCC 1287 galaxy, and the Bohr model. Furthermore, time
is defined via local thermodynamic temperature (T ), where absolute
time is described as the limiting case of an observer perceiving galac-
tic structures as molecular. Finally, we reinsert the derived velocity
and temperature definitions into the Einstein field equation and show
full mathematical consistency between metric, curvature, and energy
tensors.
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This framework suggests that gravitational behavior, orbital mo-
tion, and time are not isolated phenomena but thermodynamically
unified processes, structurally coherent and observationally consistent
with known physics.
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1 Introduction

If we define the act of placing any physical substance into one’s mouth as
“eating,” then brushing one’s teeth becomes conceptually confusing. Physics
suffers from the same vulnerability: when foundational terms are loosely or
inconsistently defined, we are forced to interpret reality through inadequate
lenses.

While Einstein revolutionized our understanding of motion, time, and
simultaneity, the gravitational paradigm remained largely Newtonian in in-
tuition. Gravity continues to be treated as a force of attraction—even within
relativistic formalism—rather than as a spatial convergence tendency driven
by entropy gradients.

This paper proposes a reinterpretation of gravity as not a force, but a
geodesic response to entropy-directed spatial convergence. In this frame-
work, what is commonly perceived as “gravitational force” is more precisely
a manifestation of inertial equilibrium, and any acceleration beyond that is
explained by action–reaction interactions between systems. Thus, classical
mechanics is recovered as a local approximation embedded within a thermo-
dynamic framework.

The concept of mass is revised: instead of a scalar entity tied to am-
biguous density and volume, mass is defined relationally through the ratio
R = m1/m2, with structure encoded in barycentric distances. In doing so,
we explicitly reinstate Einstein’s original concept of relativistic mass—not
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as a deprecated scalar artifact, but as a core structural ratio necessary for
understanding motion in thermodynamic geometry.

This yields a purely kinematic expression for orbital velocity, requiring
no reference to the gravitational constant G, and consistent with observed
behavior across macro- and micro-scales—including the Earth–Moon system,
galactic dynamics, and the Bohr model. While systems like DF2 lack suf-
ficient observational precision for direct validation, their dynamics remain
conceptually compatible with the proposed framework.

Finally, time is redefined not as a coordinate or parameter, but as the
flow rate of entropy, expressed via local thermodynamic temperature T (r).
Absolute time, in this context, is not metaphysical, but emerges as the limit-
ing case of an observer who perceives galactic structures as molecular units.
With this framing, we reinsert the derived expressions into Einstein’s field
equations, demonstrating complete structural consistency between metric,
curvature, and energy tensors.

Rather than contradicting relativity, this paper reinterprets its vocabu-
lary through a thermodynamic lens—revealing that motion, time, and grav-
ity are not disparate phenomena, but deeply unified expressions of entropic
geometry.

All subsequent formulations in this paper are derived directly from the
relativistic structure presented in Einstein’s 1905 paper [1], unless otherwise
noted. Therefore, redundant citations are intentionally minimized to preserve
readability.

2 Reconstruction of Mass: From Undefined

Volume to Ratio-Based Structure

Conventional definitions of mass rely on ambiguous combinations of density
and volume. However, it is rarely stated what kind of density is being ref-
erenced: is it molecular, atomic, or subatomic? Similarly, volume is often
assumed but not defined—if Earth’s crust constitutes its volume, what con-
stitutes the Sun’s volume? Such inconsistency undermines the foundational
clarity of mass.

We therefore reverse-engineer the concept: we start from what physics
actually uses—mass ratios. Mass appears in nearly all orbital and inertial
equations as a ratio between interacting bodies. We formally adopt this as
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the structural definition:
R =

m1

m2

(1)

Furthermore, we reinterpret “volume” not as a spatial enclosure, but as
the effective distance from the barycenter. That is:

r1 =
1

1 +R
· d, r2 =

R

1 +R
· d (2)

This allows us to treat the mass ratio R as the true physical quantity, and
the barycentric radial distance as a proxy for structural volume—grounding
all gravitational expressions in explicitly defined, observable parameters.

3 Reconstructing Centripetal Velocity via Struc-

tural Definitions

We begin with the classical centripetal force equation:

F = m · a =
mv2

r
(3)

Mass Redefinition Using Density and Volume

Traditionally, mass is expressed as:

m = ρ · V

However, both density and volume suffer from definitional ambiguity. We
replace these terms structurally as:

• Density ρ becomes the relative mass ratio:

ρ → R =
m1

m2

• Volume V is approximated as r3, where r is the radial distance from
the barycenter.

Thus, we redefine mass as:

m ∼ R (4)
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Acceleration via Orbital Period

In circular motion, acceleration is:

a = r · ω2 = r ·
(
2π

T

)2

(5)

Reconstructing Force

Substituting m = R and a into the original equation:

F = R · r ·
(
2π

T

)2

(6)

Solving for Velocity

We isolate v using v = ω · r:
v =

2π

T
· r

If r is taken as the barycentric radius for m2, then:

r =
R

1 +R
· d

Final velocity expression becomes:

v =
2π

T
·
(

R

1 +R
· d
)

(7)

This shows that classical force-based velocity can be reconstructed en-
tirely from: - Relative mass ratio R - Orbital period T - Observable distance
d

No gravitational constant G or undefined density/volume are required.

4 Validation of the Velocity Model Across

Scales

We now apply the proposed orbital velocity formula:

v =
2π

T
·
(

R

1 +R
· d
)
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Earth–Moon System

The Earth–Moon system provides an ideal testbed, as all relevant parameters
are well-known.

Input Parameters:

• Mass ratio: R = mEarth

mMoon
≈ 81.3 (NASA Planetary Fact Sheet)

• Barycentric distance: d = 3.844× 108 m (mean Earth–Moon distance)

• Orbital period: T = 2.36× 106 s (sidereal month 27.3 days)

Result: v ≈ 1, 011 m/s, matching the observed lunar orbital velocity
(∼1,022 m/s).

Sun–Earth System

Input Parameters:

• Mass ratio: R = 333,000 (IAU 2015 Resolution B3: Solar to Earth
mass ratio)

• Distance: d = 1.496× 1011 m (1 AU, mean Earth–Sun distance)

• Period: T = 3.156× 107 s (1 year)

Result: v ≈ 29,783 m/s, in agreement with Earth’s known orbital speed.

Solar System–Milky Way

Input Parameters:

• Mass ratio: R = 1010 (Milky Way stellar mass ∼ 1011M⊙, solar system
mass ∼ 1M⊙; [3])

• Distance: d = 2.5× 1020 m (8 kpc from Galactic Center)

• Period: T = 7.88× 1015 s (250 million years)

Result: v ≈ 199,340 m/s, consistent with the Sun’s galactic orbital
velocity (∼200–220 km/s).
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Ultra-Diffuse Galaxy: VCC 1287

Among known ultra-diffuse galaxies (UDGs), VCC 1287 provides the most
complete and reliable set of observable parameters—including total mass,
globular cluster count and distribution, orbital distances, and velocity dis-
persion. As such, it serves as the most suitable system for validating our
mass-ratio-based velocity formulation with empirical data.

Input Parameters:

• Mass ratio: R ≈ 100 (stellar mass ∼ 2.8 × 109M⊙, average globular
cluster ∼ 107M⊙; [2])

• Distance: d = 2.1× 1020 m (approx. 7 kpc, average cluster radius)

• Period: T = 2.0×1017 s (model-assumed, consistent with globular orbit
scales)

Result: v ≈ 6,589 m/s. This is lower than the observed dispersion range
of 17−−49 km/s, yet remains within plausible physical expectations given the
distinction between orbital velocity and statistical velocity dispersion. The
derived value corresponds to average barycentric motion, while observations
reflect local random motions, projection effects, and thermal noise.

Interpretation: While the model explains the motion of orbiting struc-
tures, it does not determine the presence or absence of dark matter. However,
when the purpose of introducing dark matter is solely to reconcile orbital
velocities, this framework suggests such steps should be approached more
cautiously. Although DF2 and DF4 lack sufficient observational constraints
for direct substitution into the formula, the fact that their dynamics can
conceptually be described remains a valuable insight.

Bohr Model of the Hydrogen Atom

Input Parameters:

• Mass ratio: R = 1836 (proton/electron mass ratio; [4])

• Distance: d = 5.29× 10−11 m (Bohr radius)

• Period: T = 1.52× 10−16 s (Bohr orbit period)

Result: v ≈ 2.19×106 m/s, in excellent agreement with classical electron
velocity.
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Limiting Case: Recovery of Classical Motion

When considering a system where only a single body is in motion and no ref-
erence mass is defined, the relative mass ratio R = m1

m2
tends toward infinity.

In this limiting case, the orbital velocity formula simplifies as follows:

v =
2π

T
·
(

R

1 +R
· d
)
→ 2πd

T

This corresponds exactly to the classical expression for orbital velocity in
circular motion:

v = ω · r
Therefore, the model naturally reduces to Newtonian mechanics under the
condition R → ∞, demonstrating that the proposed framework is consistent
with classical results in the appropriate limit. This provides a structural vali-
dation that the thermodynamic reinterpretation does not contradict existing
physics, but instead embeds classical behavior as a special case.

5 Redefining Time: A Relational and Ther-

modynamic Extension of Relativity

We know from Einstein’s theory of relativity that time is not absolute—it
flows differently depending on velocity and gravitational field strength. How-
ever, this insight has largely been interpreted with an implicit constraint: the
observer is assumed to be human. Time is understood as relative to human
instruments, but we rarely ask what time truly is beyond how it is measured.

Let us consider a hypothetical being capable of observing galaxies at the
molecular scale. To such an observer, humans and planetary bodies would
appear to move at incomprehensible speeds. In their frame, we exist in a
much faster flow of time. Conversely, molecules and atoms—though station-
ary to us—are themselves experiencing a faster rhythm of time. Furthermore,
within molecular systems, warmer molecules evolve more rapidly than colder
ones.

This leads us to a crucial point: temperature can be considered a
measurable proxy for the flow of time. A system’s rate of energetic ac-
tivity reflects its temporal evolution. High temperature corresponds to rapid
change—thus faster time. Low temperature implies slower evolution—thus
slower time.
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In the next section, we shall explore this principle in concrete mathemat-
ical terms. We will reinterpret the temporal component of Einstein’s field
equations, specifically the metric tensor component g00, as a function of local
temperature. On the right-hand side, we will replace the conventional energy-
momentum tensor with the mass-ratio-based centrifugal structure proposed
earlier.

This substitution enables us to link thermodynamic behavior (temper-
ature), mechanical structure (orbital dynamics), and relativistic curvature
(gravity) within a unified formalism.

6 Unified Thermodynamic–Kinematic Model

with Barycentric Mass Ratio

A.0. Notation and Units

All quantities follow SI units.

• T (r): Local thermodynamic temperature [K]

• Tobs: Observer-defined reference temperature [K]

• d: Distance between two mass centers [m]

• m1, m2: Masses of two bodies [kg]

• R ≡ m1m2: Relative mass ratio (dimensionless)

• T : Orbital period [s]

• ω = 2πT : Angular velocity [rad/s]

• r1, r2: Radial distances from barycenter [m]

• v: Orbital (centrifugal) velocity [m/s]

• c: Speed of light [m/s]

• G: Gravitational constant, 6.67430e− 1132
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A.1. Thermodynamic Metric and Gravitational Curva-
ture

The time component of the metric tensor is redefined as a function of local
temperature:

g00(T ) = −
(
Tobs

T (r)

)2

,

where Tobs is the observer-defined reference temperature, and T (r) is the
local thermodynamic temperature. Both have units of [K], and g00(T ) is
dimensionless in naturalized units. This model interprets temperature not
as an absolute quantity, but as a relative thermal ratio T (r)/Tobs, analogous
to mass ratio scaling.

The gravitational curvature component is defined via second derivatives
of the scalar temperature field:

G00(r) ∝ −2T 2
obs ·

T (r) · d2T (r)dr2 − 3 (dT (r)dr)2

T (r)4
.

The derivatives have units [K/m] and [K/m²], yielding curvature with units
[1/m²] when scaled appropriately.

A.2. Energy–Momentum Tensor via Temperature

The energy–momentum tensor incorporates relativistic correction:

T00(r) ∝ ρ(r) · γ2 · c2,

with density ρ(r) in [kg/m³] and Lorentz factor:

γ2 =
1

1−
(
T (r)
Tobs

)2 .
A.3. Einstein Field Equation

The time-time component of the Einstein field equation is preserved as:

G00(r) =
8πG

c4
· T00(r),

with G retaining its standard SI value.
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A.4. Barycentric Mass Ratio and Centripetal (Orbital)
Velocity

Given the relative mass ratio:

R ≡ m1

m2

,

the barycentric radial distances are:

r1 =
1

1 +R
d, r2 =

R

1 +R
d [m].

Orbital period T yields angular velocity:

ω =
2π

T
[rad/s],

and the orbital velocity for mass m2 becomes:

v = ω · r2 =
2π

T
·
(

R

1 +R
· d
)

[m/s].

Assuming thermodynamic interpretation of period:

T ∝ Tobs

T (r)
⇒ v ∝ T (r)

Tobs

,

which aligns with the Lorentz correction:

γ2 =
1

1−
(
T (r)
Tobs

)2 .
A.5. Logical Integration and Units Consistency

The system is logically consistent and dimensionally valid:

1. Metric tensor: g00(T ) = − (TobsT (r))
2 [dimensionless]

2. Curvature tensor: G00(r) ∝ −2T 2
obs T (r)T

′′(r)− 3(T ′(r))2T (r)4, with
T ′(r): [K/m], T ′′(r): [K/m²]

3. Energy tensor: T00(r) ∝ ρ(r)c21− (T (r)Tobs)
2
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4. Einstein field equation: G00(r) = 8πGc4T00(r)

5. Orbital motion:

• Relative mass ratio: R = m1/m2

• Distance from barycenter: r2 = R1 +Rd

• Orbital velocity: v = 2πT · (R1 +Rd)

6. Thermal-kinematic link: T ∝ Tobs/T (r) ⇒ v ∝ T (r)/Tobs

This integration ensures that all quantities—temperature [K], mass [kg],
distance [m], time [s], and velocity [m/s]—conform to SI units throughout,
with temperature understood not in absolute terms but as **observer-relative
thermal ratios** T (r)/Tobs, consistent with the treatment of relative mass.

7 Conclusion and Implications

The thermodynamic reinterpretation proposed in this work preserves the full
structure of Einstein’s field equations while refining the foundational defini-
tions of mass, motion, and time. By expressing gravitational and inertial
interactions in terms of observable ratios—such as mass ratio and tempera-
ture ratio—the framework recovers classical mechanics as a limiting case and
maintains consistency with known relativistic formulations.

Empirical validation was demonstrated across scales: from the Earth–Moon
system to galactic dynamics and atomic models. No gravitational constant
or undefined physical quantity was required.

Beyond theoretical coherence, the model offers potential applications in
high-precision systems. In particular, GPS synchronization algorithms may
benefit from thermal-ratio-based time correction, offering a new layer of ac-
curacy grounded in thermodynamic geometry.

Ultimately, the framework suggests that gravity, time, and motion are not
merely geometric but deeply thermodynamic—structured and measurable
across all physical scales.
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