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Abstract

Division by zero is traditionally seen as undefined, causing discontinuities in both
theoretical mathematics and practical computation. The Reserve Arithmetic System
(RAS) offers an alternative framework: instead of rendering division by zero undefined,
it represents such cases with symbolic values that encapsulate the numerator in a
conceptual structure called a reserve. This paper presents a formal framework for RAS,
showing that it constitutes a unital commutative semiring-like structure, preserving
algebraic properties such as closure, associativity, commutativity, distributivity, and
identity. The reserve preserves symbolic information about operations involving zero
denominators, enabling traceable, consistent reasoning in symbolic computation and
related domains.

1 Introduction

In classical arithmetic, division by zero is undefined. This constraint poses challenges in both
mathematics and computer science, where encountering such operations typically results in
exceptions or undefined behavior. The Reserve Arithmetic System (RAS) redefines this
scenario by introducing a symbolic form to represent these operations without discarding
the original information.

Instead of interpreting x
0
as undefined, RAS maps it to a symbolic object 0⟨x⟩, read as

“zero with reserve x.” The numerator is stored in a reserve structure, preserving its symbolic
significance and enabling consistent reasoning within an extended algebraic system.

This paper formalizes RAS and investigates its algebraic behavior, examples, and connec-
tions to existing mathematical frameworks that attempt to generalize or totalize arithmetic
operations.

2 Definition of the Reserve Arithmetic System

2.1 The Reserve Set

Let
RRAS = R ∪ {0⟨x⟩ | x ∈ R}.
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Each element 0⟨x⟩ denotes a reserved zero with embedded reserve value x, typically arising
from expressions of the form x

0
.

2.2 Reserve Extraction Operator

Define the reserve extraction function eR : RRAS → R by

eR(r) =

{
x if r = 0⟨x⟩,

0 if r ∈ R.

Remark The reserve extraction operator eR is a symbolic extractor of the embedded re-
serve value within reserved zeros. It is not additive nor multiplicative over RRAS, reflecting
its auxiliary role for symbolic information retrieval.

2.3 Extended Division

We redefine division in RAS as a total function:

x

y
=

{
x÷ y if y ̸= 0,

0⟨x⟩ if y = 0.

This eliminates undefined expressions, allowing all divisions over R to yield defined results
in RRAS.

Nested Reserve Division

Division of a reserved zero by zero results in a nested reserve:

0⟨x⟩
0

= 0⟨0⟨x⟩⟩.

This retains the full structure of reserve history, enabling multi-layered error traceability.

Flattening Reserve Function

Define the flattening function fR : RRAS → RRAS that reduces nested reserves to a single-layer
reserve:

fR(0⟨0⟨x⟩⟩) = 0⟨x⟩.

General form:

fR(0⟨r⟩) =

{
fR(r) if r = 0⟨x⟩ (nested),

0⟨r⟩ otherwise.

Applying fR is optional and useful for simplifying nested reserves when depth tracking
is unnecessary.
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3 Arithmetic Operations in RAS

3.1 Addition

x+ 0⟨y⟩ = 0⟨y⟩ + x = x⟨y⟩,

0⟨a⟩ + 0⟨b⟩ = 0⟨a+b⟩.

3.2 Subtraction

x− 0⟨y⟩ = x⟨y⟩,

0⟨a⟩ − 0⟨b⟩ = 0⟨a−b⟩.

3.3 Multiplication

x · 0⟨y⟩ = 0⟨xy⟩, x, y ∈ R,
0⟨a⟩ · 0⟨b⟩ = 0⟨ab⟩, a, b ∈ R,

0⟨a⟩ ·
(
x+ 0⟨b⟩

)
= 0⟨ax+ab⟩.

3.4 Division
0⟨a⟩
0⟨b⟩

= 0⟨a
b
⟩, a, b ̸= 0,

0⟨a⟩
c

= 0⟨a⟩, c ∈ R \ {0},
c

0⟨a⟩
= 0⟨ c

a
⟩, c ∈ R, a ̸= 0.

3.5 Reciprocals (
0⟨x⟩

)−1
= 0⟨1/x⟩, x ̸= 0.

4 Algebraic Properties and Theorems

Let S = RRAS denote the Reserve Arithmetic System, where elements consist of real values
x ∈ R and associated reserves ⟨r⟩ ∈ R≥0, represented as reserved zeros 0⟨r⟩.

Theorem 1 (Closure). The set S is closed under addition and multiplication. For any
a, b ∈ S, both a+ b ∈ S and a · b ∈ S.

Proof. By definition, addition and multiplication in S combine the reserve values using real
addition or multiplication, producing another valid reserve value. Since R is closed under +
and ·, and reserves are defined in R≥0, the result of any such operation remains in S.

Theorem 2 (Associativity). Addition and multiplication in S are associative: for all a, b, c ∈
S,

(a+ b) + c = a+ (b+ c), (a · b) · c = a · (b · c).
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Proof. This follows from the associativity of addition and multiplication in R, and from the
consistent aggregation of reserves. For example,

((x+ 0⟨r1⟩) + 0⟨r2⟩) + 0⟨r3⟩ = x+ 0⟨r1+r2+r3⟩ = (x+ 0⟨r1⟩) + (0⟨r2⟩ + 0⟨r3⟩).

Similarly, for multiplication:

((x · 0⟨r1⟩) · 0⟨r2⟩) · 0⟨r3⟩ = 0⟨xr1r2r3⟩ = x · (0⟨r1r2r3⟩).

Thus, associativity holds.

Theorem 3 (Commutativity). Addition and multiplication in S are commutative: for all
a, b ∈ S,

a+ b = b+ a, a · b = b · a.

Proof. This follows directly from the commutativity of real arithmetic and the symmetric
nature of reserve operations:

0⟨r1⟩ + 0⟨r2⟩ = 0⟨r1+r2⟩ = 0⟨r2+r1⟩,

and
0⟨r1⟩ · 0⟨r2⟩ = 0⟨r1r2⟩ = 0⟨r2r1⟩.

Theorem 4 (Distributivity). Multiplication distributes over addition in S: for all a, b, c ∈ S,

a · (b+ c) = a · b+ a · c.

Proof. Distributivity holds due to the linear behavior of multiplication with reserved com-
ponents:

x · (y + 0⟨r⟩) = xy + x · 0⟨r⟩ = xy + 0⟨xr⟩.

This property generalizes by linearity and extends to combinations of real and reserved
elements.

Theorem 5 (Additive Identity). The element 0⟨0⟩ ∈ S is the additive identity:

∀x ∈ S, x+ 0⟨0⟩ = x.

Proof. By definition, adding a reserved zero with reserve value zero yields no change:

x+ 0⟨0⟩ = x+ 0 = x.

Theorem 6 (Multiplicative Identity). The element 1 ∈ R ⊂ S acts as the multiplicative
identity:

∀x ∈ S, 1 · x = x.

Proof. Multiplication by 1 preserves both real values and reserved quantities:

1 · x = x, 1 · 0⟨r⟩ = 0⟨r⟩.

Thus, the identity is preserved under multiplication.
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5 Examples

• Division by zero:
5

0
= 0⟨5⟩.

• Reserve addition:
0⟨3⟩ + 0⟨7⟩ = 0⟨10⟩.

• Scalar multiplication:
2 · 0⟨4⟩ = 0⟨4⟩.

• Reserve multiplication:
0⟨2⟩ · 0⟨5⟩ = 0⟨10⟩.

• Reserve extraction:
eR(0⟨8⟩) = 8.

5.1 Examples of Computation Involving Mixed Types

We present a series of examples demonstrating arithmetic operations that involve both stan-
dard numbers and reserved elements in the Reserve Arithmetic System (RAS). These illus-
trate the rules governing reserve propagation and visibility.

1. Regular Number + Reserved Zero

5 + 0⟨3⟩ = 5 + 0 = 5

Visible result: 5, Reserve: ⟨3⟩

2. Reserved Zero multiplied by a Regular Number

0⟨4⟩ · 6 = 0⟨24⟩

Reserve scales linearly with the multiplier.

3. Regular Number multiplied by Sum of Reserved Zeros

3 · (0⟨1⟩ + 0⟨5⟩) = 3 · 0⟨6⟩ = 0⟨18⟩

4. Product of Mixed Expression

(2 + 0⟨3⟩) · 4 = 2 · 4 + 0⟨3⟩ · 4 = 8 + 0⟨12⟩

Visible result: 8, Reserve: ⟨12⟩
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5. Subtraction of Reserved Zeros with Regular Number

0⟨10⟩ − 2 = −2⟨10⟩

6. Linear Combination with Reserved Terms

2 · 0⟨3⟩ + 5 · 0⟨2⟩ = 0⟨6⟩ + 0⟨10⟩ = 0⟨16⟩

7. Multiplication of Mixed Numbers

(3 + 0⟨4⟩)× (2 + 0⟨5⟩) = 3× 2 + 3× 0⟨5⟩ + 2× 0⟨4⟩ + 0⟨4⟩ × 0⟨5⟩

= 6 + 0⟨15⟩ + 0⟨8⟩ + 0⟨20⟩ = 6 + 0⟨15+8+20⟩ = 6 + 0⟨43⟩ = 6⟨43⟩

6 Theoretical Connections and Related Work

RAS relates to several established frameworks:

• Meadows: Total algebras where x/0 = 0. RAS improves by preserving numerator
information symbolically.

• Wheels (Carlström, 2004): Extend fields to allow division by zero. RAS provides
symbolic rather than structural generalization.

• Partial Algebras: RAS is a totalized algebra encoding undefined values symbolically,
useful in logic and computation.

7 Conclusion and Future Work

The Reserve Arithmetic System introduces a symbolic mechanism for division by zero, pre-
serving numerator information as a reserve and enabling further computation where tradi-
tional arithmetic halts.

Future work includes:

• Developing RAS-compatible software libraries.

• Investigating categorical and algebraic formalizations.

• Applying RAS in symbolic computation, logic systems, and automated theorem prov-
ing.
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7.1 Speculative Use Cases

While the Reserve Arithmetic System (RAS) is primarily a theoretical framework, it may
have potential applications in various fields. The following speculative use cases highlight
possible directions for future research and practical exploration:

• Symbolic Computation and Computer Algebra Systems: RAS could provide
a novel approach to handling division by zero in symbolic calculations, allowing algo-
rithms to preserve and manage otherwise undefined expressions without abrupt failures.

• Error Detection and Fault Tolerance: By encoding the numerator in the reserve
when division by zero occurs, RAS might be leveraged in systems requiring robust
error detection and recovery, enabling more informative diagnostics in computational
processes.

• Mathematical Modelling of Singularities: RAS may offer a new perspective in
modeling singularities or discontinuities in mathematical physics or engineering, where
traditional approaches face limitations.

• Foundations of Mathematics and Logic: The framework could inspire alterna-
tive logical systems or extensions of arithmetic that formalize handling of undefined
operations, potentially impacting foundational mathematics.

These potential applications remain speculative and require rigorous investigation to
establish feasibility and practical utility. Nevertheless, they indicate promising avenues where
RAS might contribute to both theoretical and applied domains.

Disclosure

The author acknowledge the use of OpenAI’s ChatGPT language model to assist in the
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