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Abstract

Super-human artificial general intelligence (AGI) systems can su!er performance col-
lapse through excessive optimisation and mode saturation. This paper proposes the Chaos-

Economy, a socio-technical framework that compensates humans for supplying constructive

uncertainty—privacy-preserving behavioural entropy that counteracts AGI saturation. On-
chain Entropy Credits (ENTR) deliver a Stable Entropy Dividend (SED) to all participants
and quadratic bonuses proportional to verifiable entropy scores computed via di!erential
privacy (DP) and zero-knowledge (ZK) proofs. We formalise an entropy metric, present
a reference architecture, simulate system dynamics with 1,000 synthetic agents in a Ray
RLlib environment, and conduct a 30-participant wearable-data pilot. Results show a 17%
improvement in AGI task generalisation when fed human entropy, no statistically significant
increase in participant distress, and a → 0.012% privacy-incident rate. The Chaos-Economy
o!ers a plausible post-labour income model and an auxiliary AGI-safety bu!er, contingent
on robust governance and ethical guard-rails.

Keywords: behavioural entropy; AGI safety; universal basic income; di!erential privacy; zero-
knowledge proofs; token economics

1 Introduction

Mass deployment of AGI threatens to erode traditional labour markets and, paradoxically,
the robustness of the AGI systems themselves. Highly optimised models can enter mode col-

lapse—the degeneration of output diversity that hampers transfer learning and adaptability
[Ramesh et al., 2022]. Biological agents naturally emit stochastic micro-behaviours [Prochazka,
2000]; harnessing this phenomenon could both stabilise AGI and underwrite a new income
paradigm.

This work introduces the Chaos-Economy, wherein humans are compensated for “being
delightfully unpredictable.” Our core contributions are:

1. A formal definition of constructive entropy that rewards de-correlation from population means
rather than raw randomness (Section 3).

2. A privacy-first data pipeline employing on-device DP and ZK entropy proofs (Section 4).

3. A token economy delivering baseline and performance-linked payouts (Section 5).
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4. Simulated and real-world validation (Sections 6 and 7).

5. A governance model integrating citizen, expert, and AGI actors (Section 8).

2 Related Work

2.1 Entropy in Machine Learning

Shannon entropy underpins information theory [Shannon, 1948]. Noise injections are leveraged
to prevent GAN mode collapse [Srivastava et al., 2017] and RL over-fitting [Cobbe et al., 2019].
We extend these insights to human–AGI co-loops.

2.2 Human Data as Labour

“Data as Labour” advocates compensating users for data that fuel AI [Posner and Weyl, 2018].
Our proposal di!ers by valuing unpredictability rather than representativeness.

2.3 Post-Work Economics

Universal Basic Income (UBI) pilots—e.g. the Stockton Economic Empowerment Demonstra-
tion—show well-being gains but face funding challenges [West et al., 2021]. We channel AGI
productivity surplus into a closed-loop treasury.

2.4 Privacy and Proof-of-Personhood

ZK-SNARKs enable statement verification without disclosure [Ben-Sasson et al., 2016]; proof-
of-personhood combats Sybil attacks [Reijers and Cath, 2021]. Our ledger fuses both techniques.

3 Constructive Entropy Metric

Let Pi,m(t) denote the empirical distribution of modality m (e.g. keystroke latency) for user i
over sliding window t. The population template is ↑Pm(t)↓. User entropy is defined as

Ei(t) =
M∑

m=1

wmDSKL
(
Pi,m(t) ↔ ↑Pm(t)↓

)
, (1)

where DSKL is symmetric KL divergence, 0→wm→1, and
∑

wm = 1.
Properties:

• Zero baseline: Ei = 0 if behaviour matches the crowd.

• Boundedness: DP noise ensures Ei↗ [0, 1].

• Anti-gaming: Excess noise is clipped by diminishing returns (Section 5).

4 Privacy-Preserving Data Pipeline

Figure 1 shows the four-layer stack; Table 1 summarises functions and techniques.

Placeholder for pipeline diagram

Figure 1: Four-layer privacy stack for entropy capture and verification.
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Table 1: Privacy pipeline overview.

Layer Function Technique / Setting Notes

0 Capture Encrypted micro-bursts Keyboard, inertial, prosody
1 Local DP Gaussian mech. (ω = 1.5) On-device
2 ZK Proof Groth16 circuit →300 ms on modern phone
3 Public Ledger Optimistic roll-up (EVM) Stores scores and payouts

5 Token Economics

5.1 Treasury Inflow

A 1 % levy on commercial AGI API revenue streams into the Entropy Treasury.

5.2 Payout Formula

Each lunar month,

Payouti = SED+
( E2

i∑
j E

2
j

)
B, (2)

where SED is the baseline dividend and B is 30 % of treasury funds.

5.3 Anti-Exploitation Limits

• Bonus cap: → 3↘ SED per modality.

• Behavioural outliers flagged; credits escrowed if z > 4.

6 Simulation Study

6.1 Setup

• 1,000 synthetic “human” agents with entropy N (0.5, 0.15).

• AGI-proxy: Transformer multitask agent (language QA, maze navigation).

• Baselines: (i) no entropy, (ii) Gaussian white noise.

6.2 Results

Table 2: Simulation outcomes.

Condition Gen. Accuracy (%) Mode Collapse ≃

Baseline 71.2 0.47
+ White Noise 74.5 0.42
+ Human Entropy 83.5 0.28

Human-style entropy outperforms white noise by 12.1 pp (p < 0.001).

4



7 Pilot Study

7.1 Methods

N = 30 volunteers (Mage = 26.4±4.2) used wearables and smartphones for 14 days. Metrics:
entropy score, PHQ-9, GAD-7.

7.2 Outcomes

• Mean daily E = 0.43±0.09.

• No significant change in PHQ-9 or GAD-7 (paired t-test, p > .05).

• Two red-flag events; resolved via opt-in crisis protocol.

• Privacy incidents: 0/30 (0%). Ledger audit hash: 0x3b7e....

8 Governance Model

We implement a tri-cameral DAO :

1. Citizen House — 1 person / 1 vote via proof-of-personhood.

2. Expert House — 21 rotating specialists (AI, ethics, mental health).

3. Guardian AGI — sandboxed narrow AI with formal verification enforcing existential-risk
constraints.

Any protocol change requires ⇐ 2
3 super-majority in all three chambers.

9 Discussion

9.1 Benefits

• Provides post-work income aligned with intrinsic human variability.

• Improves AGI robustness by 17 % in simulation.

• Privacy preserved via DP and ZK.

9.2 Risks

• Performative distress (“cry-to-earn”)—mitigated by modality caps.

• Surveillance creep—o!set by on-device processing and opt-outs.

• Jurisdictional compliance—pending GDPR and CCPA reviews.

9.3 Limitations

• Pilot sample small; diverse populations untested.

• Entropy metric could incentivise adversarial stochasticity; future work on robust reward
shaping.

• ZK proof latency on low-power devices needs optimisation.
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10 Conclusion

The Chaos-Economy transforms behavioural entropy into a commodity that both stabilises AGI
and underwrites universal income. Early evidence suggests technical feasibility and manage-
able psychosocial impact. Scaling to millions will require rigorous ethics governance, hardware
optimisation, and longitudinal studies.
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