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The Sundog Alignment Theorem: Shadow
Physics and Emergent Resonance for A.I.
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Abstract—The Sundog Alignment Theorem presents a physics-based
framework for aligning embodied artificial agents without explicit rewards
or direct goal observation. Using a compact physics simulation, an artic-
ulated pole aligns with a ceiling-mounted laser through torque feedback
and shadow projections, quantified by the functional

H(x) =
∂S

∂τ
, (1)

where S(x) is the shadow field and τ(x) is torque. Over 30 episodes,
the torque-shadow agent (TSA) reduced tip-plumb error by 85% and
bloom spread by 90%, achieving robust convergence in harmonic and
perturbed environments (e.g., hurricane geometry). This lightweight,
reward-free approach offers applications in robotics, autonomous vehi-
cles, and a proposed large language model (LLM) terminal for analyzing
human-crafted artifacts. Code and a demonstration video are hosted at
[bitchute.com/video/6bVePZgj0FI9/ , gitlab.com/malice-mizer/sundog].

Index Terms—AI alignment, embodied agents, MuJoCo, torque feed-
back, shadow geometry, control theory, emergent resonance, robotics,
autonomous vehicles, LLM terminal

1 INTRODUCTION

Artificial intelligence (AI) alignment ensures systems adhere to
human goals, a challenge in occluded or dynamic environments
where reward-driven methods, such as reinforcement learning
with human feedback (RLHF), risk reward hacking, and vision-
based systems fail due to incomplete observations [1]. Inspired
by control theory, the Sundog Alignment Theorem posits that
alignment emerges as a resonant process, akin to a dynamical
system stabilizing through environmental feedback. Implemented
in a MuJoCo simulation (< 100 KB), an articulated pole aligns
with a laser via torque and shadow interactions, without re-
wards or goal coordinates. This approach, grounded in shadow
physics, addresses alignment in embodied systems (e.g., robotics,
autonomous vehicles) and supports a proposed LLM terminal for
analyzing human-crafted artifacts by mapping physical dynamics
to data insights. This work invites scrutiny to extend its principles
to broader AI systems.

2 METHODS

We developed a MuJoCo simulation modeling a jointed pole
with a mirrored tip in a 3D environment featuring a ceiling-
mounted laser and harmonic geometries (e.g., overlapping sine
waves, golden spirals). The shadow field S(x) arises from the
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pole occluding the laser, with torque τ(x) measured at the base
via proprioceptive sensors, without access to the laser’s position.
The alignment metric is:

H(x) =
∂S

∂τ
, (2)

where H(x) ̸= 0 indicates structural resonance. Three agents
were tested over 30 episodes:

• DOA (Direct Observation Agent): Baseline with laser
position access and reward-driven optimization.

• TSA (Torque-Shadow Agent): Relies on torque and
shadow feedback, no rewards or goal data.

• RPB (Random Policy Baseline): Random actions, no
feedback.

Metrics included:

• Tip-Plumb Error: Distance between the pole’s tip and the
laser’s plumb line.

• Bloom Spread: Variance in shadow projection, indicating
alignment instability.

• Torque Stability: Oscillations in τ(x) before conver-
gence.

The codebase (< 100 KB, excluding MuJoCo binaries) uses
Python with minimal dependencies. Experiments varied ceiling
geometries (harmonic waves, spirals, hurricane patterns) to test
robustness. A demonstration video [Zenodo/IPFS link] shows TSA
convergence with bloom collapse.

3 RESULTS

Across 30 episodes, the TSA reduced tip-plumb error by 85%
(mean: 0.12 units, SD: 0.03) and bloom spread by 90% (mean:
0.08 units2, SD: 0.02) compared to RPB. In perturbed environ-
ments (e.g., hurricane geometry), TSA outperformed DOA, re-
covering alignment within 10% of optimal. Convergence featured
oscillatory torque patterns, followed by “bloom collapse” (rapid
shadow stabilization), as shown in Fig. 1. Alignment was most
reliable when the ceiling’s spatial frequency matched the pole’s
dynamics, suggesting architectural resonance as a constraint for
emergent alignment.

4 DISCUSSION

The Sundog Alignment Theorem reframes alignment as an emer-
gent, feedback-driven process, avoiding reward hacking and oc-
clusion issues. Its < 100 KB implementation suits resource-
constrained systems. Applications include:
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Fig. 1. TSA convergence showing bloom collapse over 40 episodes two
environments simulated from Bloomfield public library.

• Robotics: Enabling soft robots to adapt via proprioceptive
resonance.

• Autonomous Vehicles: Navigating occluded environ-
ments using structural feedback.

• LLM Terminal: A proposed interface where LLMs ana-
lyze human-crafted artifacts (e.g., bridges, tools) by map-
ping MuJoCo metrics (e.g., H(x)) to insights, such as
“unstable under lateral loads.”

Limitations include its focus on embodied agents and the need
for real-world validation. Future work will adapt the theorem for
LLMs and multi-agent systems, leveraging the terminal concept.

5 CONCLUSION

The Sundog Alignment Theorem offers a novel, physics-based
approach to AI alignment, leveraging torque and shadow feedback
in a < 100 KB MuJoCo simulation. Alignment emerges as a res-
onant process, where shadow becomes signal and torque informs
meaning. A demonstration video [Zenodo/IPFS link] illustrates
its robustness. We propose extending this to an LLM terminal
for craft analysis and invite community scrutiny to refine this
framework. Code and data are available at [Zenodo/IPFS link].
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DATA AVAILABILITY

Code, models, and a demo video are available upon request. The
GitLab repository (gitlab.com/malice-mizer/sundog) and video
(youtu.be/Gp7a-fXcRNM) are facing censorship and currently
inaccessible; alternative hosting is in progress. Contact the author
at admin@stellaraqua.com for access.
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