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Abstract—The Sundog Alignment Theorem presents a physics-based
framework for aligning embodied artificial agents without explicit rewards
or direct goal observation. Using a compact physics simulation, an artic-
ulated pole aligns with a ceiling-mounted laser through torque feedback
and shadow projections, quantified by the functional

as
ZE) = 4

or
where S(z) is the shadow field and 7(z) is torque. Over 30 episodes,
the torque-shadow agent (TSA) reduced tip-plumb error by 85% and
bloom spread by 90%, achieving robust convergence in harmonic and
perturbed environments (e.g., hurricane geometry). This lightweight,
reward-free approach offers applications in robotics, autonomous vehi-
cles, and a proposed large language model (LLM) terminal for analyzing
human-crafted artifacts. Code and a demonstration video are hosted at
[bitchute.com/video/6bVePZgjoF19/ , gitlab.com/malice-mizer/sundog].
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1 INTRODUCTION

Artificial intelligence (AI) alignment ensures systems adhere to
human goals, a challenge in occluded or dynamic environments
where reward-driven methods, such as reinforcement learning
with human feedback (RLHF), risk reward hacking, and vision-
based systems fail due to incomplete observations [1]]. Inspired
by control theory, the Sundog Alignment Theorem posits that
alignment emerges as a resonant process, akin to a dynamical
system stabilizing through environmental feedback. Implemented
in a MuJoCo simulation (< 100 KB), an articulated pole aligns
with a laser via torque and shadow interactions, without re-
wards or goal coordinates. This approach, grounded in shadow
physics, addresses alignment in embodied systems (e.g., robotics,
autonomous vehicles) and supports a proposed LLM terminal for
analyzing human-crafted artifacts by mapping physical dynamics
to data insights. This work invites scrutiny to extend its principles
to broader Al systems.

2 METHODS

We developed a MuJoCo simulation modeling a jointed pole
with a mirrored tip in a 3D environment featuring a ceiling-
mounted laser and harmonic geometries (e.g., overlapping sine
waves, golden spirals). The shadow field S(x) arises from the
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pole occluding the laser, with torque 7(2) measured at the base
via proprioceptive sensors, without access to the laser’s position.
The alignment metric is:

08
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where H(z) # 0 indicates structural resonance. Three agents
were tested over 30 episodes:

H(x) 2

o DOA (Direct Observation Agent): Baseline with laser
position access and reward-driven optimization.

e TSA (Torque-Shadow Agent): Relies on torque and
shadow feedback, no rewards or goal data.

« RPB (Random Policy Baseline): Random actions, no
feedback.

Metrics included:

e Tip-Plumb Error: Distance between the pole’s tip and the
laser’s plumb line.

o Bloom Spread: Variance in shadow projection, indicating
alignment instability.

o Torque Stability: Oscillations in 7(x) before conver-
gence.

The codebase (< 100 KB, excluding MuJoCo binaries) uses
Python with minimal dependencies. Experiments varied ceiling
geometries (harmonic waves, spirals, hurricane patterns) to test
robustness. A demonstration video [Zenodo/IPFS link] shows TSA
convergence with bloom collapse.

3 RESULTS

Across 30 episodes, the TSA reduced tip-plumb error by 85%
(mean: 0.12 units, SD: 0.03) and bloom spread by 90% (mean:
0.08 units?, SD: 0.02) compared to RPB. In perturbed environ-
ments (e.g., hurricane geometry), TSA outperformed DOA, re-
covering alignment within 10% of optimal. Convergence featured
oscillatory torque patterns, followed by “bloom collapse” (rapid
shadow stabilization), as shown in Fig. |I} Alignment was most
reliable when the ceiling’s spatial frequency matched the pole’s
dynamics, suggesting architectural resonance as a constraint for
emergent alignment.

4 DISCUSSION

The Sundog Alignment Theorem reframes alignment as an emer-
gent, feedback-driven process, avoiding reward hacking and oc-
clusion issues. Its < 100 KB implementation suits resource-
constrained systems. Applications include:
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Fig. 1. TSA convergence showing bloom collapse over 40 episodes two
environments simulated from Bloomfield public library.

« Robotics: Enabling soft robots to adapt via proprioceptive
resonance.

e Autonomous Vehicles: Navigating occluded environ-
ments using structural feedback.

e« LLM Terminal: A proposed interface where LLMs ana-
lyze human-crafted artifacts (e.g., bridges, tools) by map-
ping MuJoCo metrics (e.g., H(z)) to insights, such as
“unstable under lateral loads.”

Limitations include its focus on embodied agents and the need
for real-world validation. Future work will adapt the theorem for
LLMs and multi-agent systems, leveraging the terminal concept.

5 CONCLUSION

The Sundog Alignment Theorem offers a novel, physics-based
approach to Al alignment, leveraging torque and shadow feedback
in a < 100 KB MuJoCo simulation. Alignment emerges as a res-
onant process, where shadow becomes signal and torque informs
meaning. A demonstration video [Zenodo/IPFS link] illustrates
its robustness. We propose extending this to an LLM terminal
for craft analysis and invite community scrutiny to refine this
framework. Code and data are available at [Zenodo/IPFS link].
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DATA AVAILABILITY

Code, models, and a demo video are available upon request. The
GitLab repository (gitlab.com/malice-mizer/sundog) and video
(youtu.be/Gp7a-fXcRNM) are facing censorship and currently
inaccessible; alternative hosting is in progress. Contact the author
at admin @stellaraqua.com! for access.
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