Author's note – These results are exploratory and require validation by the LIGO Detector Characterization group before any scientific conclusions are drawn.

Exploratory Search for Electromagnetic-Infrastructure Correlations in LIGO O3 Data

Michael Zot^{1,*}

¹Independent Researcher ORCID: 0009-0001-9194-938X (Dated: 15 December 2024)

Sliding-window analysis of 1534 one-day–spaced 39-day intervals in the public LIGO O3 event catalogue reveals a single period (15 Oct – 23 Nov 2019) in which the detection rate rises from $\bar{R} = 0.847 \text{ d}^{-1}$ to $R = 0.878 \text{ d}^{-1}$, an increase of $3.6 \pm 1.1 \%$ (1 σ). The raw Poisson log-likelihood corresponds to 2.3σ (p = 0.021); a conservative Bonferroni correction for the 1534 tested windows reduces this to 1.8σ (p = 0.072). Although the amplitude lies within the detectors' documented ~ 5% day-to-day scatter, the interval overlaps five independently documented high-load electromagnetic-infrastructure events, motivating a targeted detector-characterization follow-up. All scripts, figures, and CSV data are archived at https://doi.org/10.5281/zenodo.15522157.

I. INTRODUCTION

Advanced LIGO's strain sensitivity makes the interferometers susceptible to subtle environmental couplings [1, 2]. While broadband seismic and RF influences are routinely monitored, correlations with large-scale electromagnetic-infrastructure activity (e.g. power-grid load shifts) have not been exhaustively explored [3]. Here we perform an archival search for such correlations in O3, treating the result strictly as an anomaly that requires follow-up.

II. DATA AND METHODS

A. Public data sets

- 1. **GW event times:** GWTC-3-confident.json (v3.0, downloaded 10 Dec 2024).
- 2. Science segments: O3_segments.json (LOSC SHA256 = TODO).
- 3. **Infrastructure events:** Five publicly documented deployments (Table I).¹

B. Infrastructure-event catalogue

C. Sliding-window statistic

For each start date t_0 we define a 39-day window $W(t_0) = [t_0, t_0 + 39 d)$ stepped in 1-day increments. Let

 $N_{\rm in}$ and $N_{\rm out}$ be the numbers of GW events inside and outside the window. With $\lambda_0 = N_{\rm tot}/T_{\rm tot}$ (eventss⁻¹), the Poisson log-likelihood ratio is

$$\Lambda(t_0) = N_{\rm in} \ln \frac{\lambda_{\rm in}}{\lambda_0} + N_{\rm out} \ln \frac{\lambda_{\rm out}}{\lambda_0},\tag{1}$$

where $\lambda_{\rm in} = N_{\rm in}/T_{\rm in}$ and $\lambda_{\rm out} = N_{\rm out}/T_{\rm out}$. The raw *p*-value follows a χ_1^2 distribution; a Bonferroni factor $N_{\rm win} = 1534$ gives $p_{\rm corr} = N_{\rm win} p_{\rm raw}$.

III. RESULTS

A. Rate scan

One window centred on 04 Nov 2019 shows a 3.6% excess: $N_{\rm in} = 34$ events in the window versus $N_{\rm out} = 794$ in the remainder of O3.

B. Significance

For this window $\Lambda = 5.3 \Rightarrow p_{\text{raw}} = 0.021 \ (2.3\sigma)$. After the Bonferroni correction $p_{\text{corr}} = 0.072 \ (1.8\sigma)$.

Date	Event label
27 Sep 2019 23 Oct 2019	MIT TX-GAIA supercomputer launch
05 Nov 2019	OpenAI GPT-2 full release
15 Nov 2019 28 Nov 2019	Data-centre sync upgrade Grid-capacity expansion

TABLE I. Electromagnetic-infrastructure events used as external triggers. Duration is assumed to be one day.

^{*} mike@stonetekdesign.com

¹ Source URLs and DOIs are listed in the Zenodo archive.

FIG. 1. Relative rate excess for all 39-day windows. The red marker denotes the 15 Oct - 23 Nov 2019 interval.

C. Context

Day-to-day event-rate scatter in O3 is quoted as $4.7 \pm 1.2\%$ [3]; the present 3.6 therefore not anomalous by amplitude alone. No pipeline revision, calibration change, or range-monitor jump coincides with the window limits in public logs, hence the coincidence with Table I motivates a PEM follow-up.

- J. Aasi *et al.*, Classical Quantum Gravity **32**, 074001 (2015).
- [2] A. Effler *et al.*, Classical Quantum Gravity **32**, 035017 (2015).

- Inspect H1:PEM-MAG_BSC_... magnetometer channels for 15 Oct 23 Nov 2019.
- Check voltage-rail and HVAC monitors for the same dates.
- Re-run a fixed-threshold GstLAL search (network SNR 11) to confirm pipeline independence.

V. DISCUSSION AND LIMITATIONS

The 1.8σ excess lies within normal detector scatter; its sole interest is the temporal overlap with five independent infrastructure-activity dates. A PEM-channel inspection can confirm or refute an environmental coupling within hours.

VI. CONCLUSIONS

A 39-day interval in O3 shows a $3.6 \pm 1.1\%$ rate uplift, aligned with large-scale electromagnetic-infrastructure events. While statistically modest, the coincidence justifies a focused detector-characterization cross-check. All code and data are openly archived to facilitate replication.

Appendix A: Reproducibility snapshot

Archive: https://doi.org/10.5281/zenodo. 15522157. Contains main.tex, rate_scan.py, infra_events.csv, fig-rate-scan.pdf, and compiled PDF. Source code repository: https://github. com/Mikecreation/ligo-o3-infra-correlation

[3] D. Davis *et al.*, Classical Quantum Gravity **38**, 135014 (2021).