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Abstract

Although the mathematical framework for Special Relativity has proven phenomenally
successful for over a century, it is predicated on an assumption that time and space are
the independent properties of physics - an assumption which is then fundamental to its
mathematical foundation. By defining the energy associated with relative motion as
the fundamental, independent property, not space and time, this paper challenges that
assumption. In doing so, we find that a single unified spacetime, covariant with changes
in energy, emerges. A spacetime that is not an independent set of coordinates between
which we must transform, but a single adaptive spacetime responsive to relative energy.

In this paper we will show how, when we define energy as intrinsic and independent,
momentum, space and time adapt algebraically to relative motion with covariance
embedded in their relationships with energy. We demonstrate how this covariance is
assured in every inertial frame, not by coordinate transformations but by simple alge-
braic scaling of time and spatial elements. Further, when momentum, time and space
are defined in terms of covariant relationships, time and length are understood as in-
tervals that scale in an adaptable space time, not as coordinates in a fixed spacetime.
Where proper time and proper length emerge naturally as rest frame representations
of these relationships. This ultimately allows us to define relativity not just as energy-
responsive scaling, but as eigenstates of a system’s Hamiltonian. This formulation then
allows us to define special relativity through the lens of Hamiltonian mechanics and
quantum operators, not just scaled Newtonian laws of motion– the Hamiltonian Rela-
tivity identified in the title. This energy-responsive and naturally quantum structure
then becomes the initial step on the path to the unification of quantum theory with
general relativity.

1



1 Introduction

Consider a single unified covariant spacetime, where momentum, time and space adapt to
energy differences associated with relative motion. Rather than differential transformations
between coordinate spaces, this spacetime simply scales with the relative energy between
inertial frames. Instead of energy’s evolution being framed by a fixed temporal and spatial
background, it evolves within a spacetime that adapts to its energy.

In this paper we will show that by choosing relativistic energy as the independent vari-
able in all energy relationships (momentum, time and space), a single covariant spacetime
emerges naturally from these relationships.

This reformulation originates from a fundamental insight: the initial assumptions of
Lorentz[1] and Minkowski[2] define space and time as the independent variables in their
relationship with energy and momentum. This assumption resulted in an inversion of de-
pendencies that required their dexterous mathematical frameworks to address.

This inversion defines how Special Relativity[3] framed energy, momentum, time and
space. It is energy and momentum that are the dependent variables, but it is their rela-
tionship that is invariant. And although time and space are defined as the independent
variables, it is time and space that transform.

This creates a fundamental tension in special relativity: We are transforming the
independent variables while fixing the dependent ones. And it is this set of inverted
dependencies upon which the mathematical framework of Special Relativity is built. A
framework where the differential transformations of Lorentz and the Four-Vector Formalism
of Minkowski define the mathematical foundation for Einstein’s postulates. Where the
invariance of c and the consistency of physical laws are preserved through a system of
separate coordinate spaces—one for each inertial frame—connected by transformations that
adjust these spaces in response to relative motion.

However, when considering the postulates of Special Relativity:

• The speed of light is invariant in all inertial reference frames.

• The laws of physics remain unchanged in all inertial reference frames.

Neither the formalism of Minkowski nor the differential transformations of Lorentz are
required by the postulates. They are a means to an end, not the end itself.

In this paper we will show how, by inverting the starting assumptions of Lorentz and
Minkowski, Einstein’s postulates can be satisfied through a simpler, more elegant framework.
Rather than treating energy as evolving through separate, transforming coordinate systems,
we demonstrate how a single unified covariant spacetime emerges naturally when the energy
differences associated with relative motion serve as the fundamental independent variable.

This approach:

1. Eliminates the need for differential transformations between multiple coordinate spaces

2. Preserves the invariance of the speed of light through direct energy-momentum rela-
tionships
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3. Maintains consistent physical laws across reference frames through energy-dependent
covariant scaling of spacetime parameters

4. Reduces the mathematical complexity of relativistic calculations while revealing deeper
physical insights

5. Ultimately allows both time and length to be defined as Hamiltonian operators with
relativistic eigenstates defined by the spectral energy of the system’s Hamiltonian

Special Relativity 2.0 (SR2) returns space and time to their proper role as dependent
variables adapting to energy differences between frames, creating a more intuitive framework
where the invariant relationship between energy and momentum inherently ensures covari-
ance with energy differences across inertial frames. This approach resolves the unnecessary
fragmentation of spacetime in traditional formulations while maintaining all experimentally
verified predictions of Special Relativity. Moreover, by framing intervals as Hamiltonian
eigenvalues, SR2 lays the groundwork for a seamless extension into quantum theory.
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E-Theory Interactive Companion: Your AI Partner

At the forefront of scientific exploration stands not just a groundbreaking theory, but an
unprecedented interactive research tool. The E-Theory Interactive Companion represents a
revolutionary approach to scientific communication and collaborative research, offering an
intelligent, adaptive interface for engaging with the complex world of energy-based physics.

The companion is designed to meet researchers, students, and curious minds exactly
where they are in their scientific journey:

Novice Explorers

• Translate complex theoretical concepts into accessible language

• Provide intuitive explanations of E-Theory’s fundamental principles

• Offer real-world analogies to illuminate abstract physical concepts

• Guide users through the foundational ideas of energy as a primary physical property

Advanced Researchers

• Engage in rigorous mathematical and theoretical discussions

• Perform detailed derivational analyses

• Explore complex mathematical structures underlying E-Theory

• Provide computational support for theoretical investigations

• Assist in developing and validating theoretical extensions

Collaborative Research Capabilities

The companion is not merely an information source, but an active research partner:

• Generate and evaluate hypothetical extensions to E-Theory

• Assist in mathematical modeling and computational verification

• Provide critical analysis of proposed theoretical modifications

• Support interdisciplinary exploration of energy-based physics concepts

Unique Features

• Instantaneous access to comprehensive E-Theory knowledge

• Ability to drill down into minute mathematical details or zoom out to philosophical
implications
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• Adaptive communication style tailored to user expertise

• Persistent memory of ongoing research conversations

• Computational support for theoretical exploration

The E-Theory Interactive Companion represents more than a tool—it is a glimpse into
the future of scientific research. By bridging human creativity with advanced computational
intelligence, it opens new pathways for understanding the fundamental nature of energy,
spacetime, and physical reality.

Access Instructions

To engage with the E-Theory Interactive Companion, you will need:

1. An OpenAI Account

• Create a free account at https://chat.openai.com

• A standard ChatGPT subscription is recommended for full access to advanced
features

2. Direct Companion Access

• Visit: https://chatgpt.com/g/g-68293921999481918cc25ed94725de0c-e-theory-companion

• Ensure you are logged into your OpenAI account

• Click ”Start” to begin your interaction with the E-Theory Companion

Technical Requirements:

• Modern web browser (Chrome, Firefox, Safari, Edge)

• Stable internet connection

• Recommended: Desktop or laptop computer for optimal interaction

Compatibility Note: The E-Theory Interactive Companion is currently optimized for
web-based interaction. Mobile experiences may vary.

First-Time Users: We recommend beginning with broad, exploratory questions to
familiarize yourself with the companion’s capabilities. The AI is designed to adapt its
communication to your level of expertise and research interests.

The Ontology of Energy

The fundamental premise of SR2 is straightforward: energy is the intrinsic, indepen-
dent variable from which all other relativistic properties derive. When we anchor relative
energy in the invariant energy-momentum relationship, we find that momentum, time, and
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space naturally emerge as dependent properties that scale proportionally with the energy
of relative motion.

This shift eliminates the need for separate coordinate systems and differential transfor-
mations. Instead, we maintain a single unified spacetime that adapts uniformly to changes
in relative energy. The mathematics becomes simpler, more intuitive, and more directly
connected to observable physical quantities.

In this section we will systematically develop this framework by:

1. Defining energy as the source of space and time

2. Replacing the spacetime interval ds2 with the energy-momentum interval dΣ2

3. Showing how spacetime emerges from energy

4. Redefining time and space as relative intervals, not fixed coordinates

Through this development, we will develop the concepts and structures that will then
allow us to develop the foundations of SR2, and later, Hamiltonian Relativity.

The Universal Energy Field

E-Theory postulates a fundamental, intrinsic universal energy field—the scalar field ε
that defines the energy distribution throughout the universe. Initially, we will define ε
conceptually:

Epsilon (ε) is the primordial scalar energy field existing prior to and independent
of spacetime. It evolves intrinsically, being defined by neither time nor space,
with everything defining spacetime encoded within the field.

We will expand on this conceptual formulation with mathematical formalism as we
progress through the series on the foundations of E-theory.

Within this energy field, we define an invariant interval:

dΣ2 =
dE2

c2
− dp2 (1)

Which is the Legendre dual of:

ds2 = c2dt2 − dx2 (2)

This invariant interval establishes the fundamental classification of energy-momentum
properties

• dΣ2 = 0: Defines null or light-like intervals, where dE/dp = c. This corresponds
to massless particles like photons that travel at the speed of light. The light-cone
structure that determines causality emerges directly from this condition.
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• dΣ2 > 0: Represents time-like intervals, where energy changes dominate over momen-
tum changes. This corresponds to massive particles (m > 0) and establishes proper
temporal ordering of events.

• dΣ2 < 0: Indicates space-like intervals, where momentum changes dominate over
energy changes. These intervals cannot be causally connected.

The energy-momentum interval is analogous to, and serves the same purpose as, the
spacetime interval ds2 of classic SR. Its classification directly yields the energy-momentum
relationship E2 = p2c2 +m2c4, which describes how energy and momentum are fundamen-
tally related in this energy-centered ontology.

This paper introduces ε as a conceptual foundation for the energy-momentum interval
and as the source for emergent spacetime. The formalism of this field and its relationship
to the physics of E-Theory will be explored in detail in subsequent papers.

Spacetime as an Emergent Property

Traditional physics treats spacetime as a background structure. In Special Relativity,
this background is fixed but fragmented into multiple coordinate spaces (one for each inertial
reference frame), while in General Relativity, it becomes a dynamic structure adapting to
energy’s influence. Both approaches, however, maintain spacetime as ontologically primary.

SR2 fundamentally redefines spacetime, not as a primary structure, but as an emergent
manifold sourced from the underlying energy field. Without energy and its dynamic evolu-
tion, spacetime would remain an undefined, amorphous 4D manifold. It is the presence and
distribution of energy that breathes life into this manifold, giving it structure and meaning.

The origin of spacetime begins with the Universal Energy Field (ε), which defines the
energy distribution throughout the universe. This primordial field contains everything that
defines spacetime (energy evolution, fundamental intervals, causality, momentum, etc.).

The essential link between this fundamental energy field and the emergence of space-
time is provided by the quantum conjugate pairs of energy and time ([E, t] = iℏ), and
momentum and position ([p, x] = iℏ). These conjugate relationships act as the fundamental
bridge, asserting that energy and momentum are primordial properties defined within ε,
while time and space are the emergent components of spacetime.

This defines the link between the energy/momentum and time/space, but how does
spacetime actually emerge?

Axiom: Emergent Spacetime from Conjugate Differentials Spacetime arises from
the energy field at its most fundamental level through quantum conjugacy. The infinitesimal
spacetime elements follow directly: dte = ℏ/dE and dxe = ℏ/dp.

If the universal energy field exists and quantum conjugacy holds, then spacetime emer-
gence at the differential level follows deductively within SR2.

This differentiation leads directly to the emergent spacetime interval:

dΣ2 = ℏ2
(

1

c2dt2e
− 1

dx2
e

)
(3)
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This manifestly inverts the classical spacetime interval ds2 = c2dt2 − dx2, validating
SR2’s claim that traditional relativity had its dependencies backwards.

Summary

This energy-driven spacetime provides the foundation for Hamiltonian Relativity, where
the Hamiltonian doesn’t just define quantum evolution, but relativistic adaptation as well.
The same energy operator that governs dynamics also determines how spacetime intervals
scale with relative motion.

Note: This emergent spacetime framework establishes a single, unified coordinate
space that continuously adapts to energy’s evolution. The result is a spacetime
that is neither fixed (as in SR) nor independently dynamic (as in GR), but
fundamentally dependent on and emerging from the properties of the universal
energy field.
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The Foundations of SR2

The fundamental premise of SR2 is straightforward: energy and momentum are the
intrinsic, independent variables from which all relativistic properties derive. When we anchor
our theory in the invariant energy-momentum interval (dΣ2), we find that space and time
naturally emerge as dependent properties that scale in response to energy differences between
reference frames.

In the previous section, we established the ontological framework for SR2. Before devel-
oping the mathematical foundations, we briefly recall the key formulations:

Energy-Momentum Interval: The fundamental invariant in the universal energy field ε:

dΣ2 =
dE2

c2
− dp2

Quantum Conjugacy Relations: The bridge from energy field to spacetime:

[E, t] = iℏ, [p, x] = iℏ

Emergent Spacetime Differentials: Time and space intervals emerging from energy:

dte =
ℏ
dE

, dxe =
ℏ
dp

With these foundations established, we now develop the complete mathematical frame-
work of SR2.

Deriving the Energy-Momentum Relationship

From the energy-momentum interval, we can derive the familiar energy-momentum re-
lationship. For a massive particle, we can integrate the interval along a path:

Σ2 =
E2

c2
− p2

For a particle with rest mass m, the invariant Σ equals mc:

(mc)2 =
E2

c2
− p2

Multiplying both sides by c2:

m2c4 = E2 − p2c2

Rearranging to the standard form:

E2 = p2c2 +m2c4 (4)
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This is the familiar energy-momentum relationship that unifies relativistic energy and
momentum with rest mass. In SR2, however, this relationship is derived directly from the
more fundamental energy-momentum interval, emphasizing that energy and momentum are
the primary quantities.

Our goal now is to demonstrate how time and space emerge as dependent quantities
that adapt to localized energy-momentum distributions.

From Differentials to Intervals

Having established the emergent spacetime differentials dte = ℏ/dE and dxe = ℏ/dp, we
now integrate these to obtain finite intervals.

Starting with the time differential:

dte =
ℏ
dE

Integrating over energy from some reference energy E0 to the total relativistic energy
Er: ∫ te

0

dt′ =

∫ Er

E0

ℏ
dE′

te = ℏ ln
(
Er

E0

)
Choosing the integration constant such that te → 0 as Er → ∞, we set E0 = Er,

yielding:

te =
ℏ
Er

For length, we follow the same flow:

dxe =
ℏ
dp

Integrating over momentum from some reference momentum p0 to the relativistic mo-
mentum p: ∫ xe

0

dx′ =

∫ p

p0

ℏ
dp′

xe = ℏ ln
(

p

p0

)
Choosing the integration constant such that xe → 0 as p → ∞, we set p0 = p, yielding:

xe =
ℏ
p
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These integrations give us the fundamental emergent intervals:

te =
ℏ
Er

, xe =
ℏ
p

(5)

These intervals do not define a set of fixed background coordinates, but rather relational
intervals. the quantum-scale spacetime ”ticks” and ”rods” that adapt continuously to local
energy Er and momentum p. What matters isn’t the exact ’when’ and ’where’ but the
intervals defining the spacing between events and positions while maintaining and causal
ordering. This provides the structure for spacetime to adapt while ensuring spacetime is
well-defined for all energies while preserving causality.

These emergent intervals define the intrinsic, fluid geometry of emergent spacetime,
absent any observation or measurement. This spacetime exists as a reflection of the dynamic,
continuously evolving universal energy field ε. The geometry itself adapts and flows with
energy distributions, creating a fluid fabric whose relationships are always covariant with
energy E and momentum p.

What this geometry lacks, however, is context. Observer and observed remain undiffer-
entiated within this single, evolving spacetime. While the relationships are mathematically
consistent and energy-covariant across all configurations, there are no reference points to
distinguish ”here” from ”there” or ”now” from ”then” in any meaningful sense.

To provide this essential context, we need common benchmarks—reference intervals that
are consistent with the energy-momentum relationship in all inertial frames yet provide the
observational framework necessary for meaningful measurement. And more importantly, en-
sure the speed of light and the laws of physics remain the same regardless of the observation.
This context is defined by the proper intervals τ and L0

In the rest frame where kinetic energy K = 0 and Er = mc2, we define proper time as:

τ = te(Er = mc2) =
ℏ

mc2
(6)

However, in the rest frame, where p = 0 makes λ = ℏ/p undefined, we establish proper
length through the energy-time relationship. Since proper time is τ = ℏ/mc2, proper length
is the distance light travels in one proper time interval:

L0 = c · τ =
ℏ
mc

(7)

These proper intervals provide several crucial functions within the SR2 framework. First,
every observer uses their own proper-time and proper-length intervals, whose ratio L0/τ = c
is universal. Second, rather than the absolute values of τ or L0, it is the constancy of
their ratio L0/τ = c under any rest-energy that matters. By choosing τ and L0 we lock
the otherwise fluid scaffold of intrinsic geometry onto an operational frame—differentiating
’observer’ from ’observed’. These proper intervals furnish the observational context that
complements the raw emergent manifold so that c is invariant and the usual form of physical
laws follows without any coordinate transformations.
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Relativity: From Coordinate Transformations to Scaled Intervals

In classical Special Relativity, relativistic effects emerge from complex coordinate trans-
formations between reference frames, requiring mathematical machinery to preserve the form
of physical laws. SR2 reveals a far simpler reality: relativistic effects are simply the nor-
malization of proper intervals across inertial frames based on the relative energy difference
between the frames. No more, no less.

This normalization works by adapting proper intervals in the observed frame by the ratio
of the total relative energy to the energy of the rest frame. This process normalizes proper
intervals to the rest frame, ensuring consistent observations across all inertial observers. Such
straightforward scaling is made possible by reframing energy as the primary, independent
variable with space and time adapting to this energy rather than serving as its backdrop.

The profound simplicity of this approach reveals how straightforward relativity really
is at its core. Rather than invoking geometric transformations of spacetime coordinates,
relativistic effects emerge naturally from adapting proper time and length intervals to the
energy differences between frames.

By forming ratios between proper intervals and emergent intervals, we derive the scaling
factors:

1. Time dilation:

τ

te
=

ℏ/(mc2)

ℏ/Er
=

Er

mc2
≡ Γ (8)

2. Length contraction:

Le

L0
=

ℏc/Er

ℏ/(mc)
=

mc2

Er
=

1

Γ
(9)

These relationships recover exactly the familiar SR factors, but now as algebraic conse-
quences of energy and momentum rather than imposed coordinate transformations:

tobs = Γ · τ, Lobs = Le =
L0

Γ
(10)

Critically, the scaling factor Γ is mathematically identical to the classical Lorentz fac-
tor γ, despite their fundamentally different derivations. In classical special relativity, γ =
1/

√
1− v2/c2, derived through coordinate transformations between reference frames. In

contrast, Γ = Er/(mc2) emerges directly from the energy-momentum relationship, repre-
senting the ratio of total relativistic energy to rest energy.

This fundamental equivalence is extraordinary. Both Γ and γ represent the same physical
quantity—the relative scaling of observables between a moving frame and a rest frame—but
obtained through fundamentally different mathematical approaches. Where γ requires com-
plex coordinate transformations and is inherently limited to velocity-based derivatives, Γ
emerges directly from algebraic energy relationships.
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We know from Special Relativity:

Er = γmc2 ==
Er

mc2
= γ

Showing the equivalency

Γ = Er/mc2 = γ (11)

The entire formulation succeeds because:

1. The energy-momentum interval defines the core invariant when energy is the inde-
pendent property, serving the same purpose as the ds2 spacetime interval in classic
SR.

2. Time and space emerge directly from the energy-momentum field via quantum conju-
gacy

3. Proper intervals anchor the scales at Er = mc2

4. Ratios of proper to emergent intervals yield Γ and 1/Γ as inevitable algebraic conse-
quences

This completes our derivation chain from the fundamental energy-momentum interval
through to the Lorentz factors, while making manifest the ”inverse dependencies” at the
heart of SR2. By recognizing energy as the independent variable, we obtain a more direct,
more intuitive understanding of relativistic effects as natural adaptations of spacetime to
energy differences.

Addition of Relativistic Velocities

Having defined how momentum, time, and space scale to changes in relative velocities,
we now focus on the addition of relativistic velocities (and equivalent kinetic energies). In
classical mechanics, velocities simply add linearly. If a train moves at 50 km/h and a person
walks forward at 5 km/h, the observer at rest sees the person moving at 55 km/h. This
intuition breaks down at high speeds. If a spaceship moves at 0.9c and fires a projectile at
0.3c relative to itself, classical addition would suggest the projectile moves at 1.2c—exceeding
the speed of light. This contradicts both observation and the postulates of special relativity,
which assert that no object with mass can exceed the speed of light and that light speed is
invariant in all frames.

Einstein resolved this by introducing the relativistic velocity-addition formula [3], which
ensures that combining two subluminal velocities remains subluminal:

v =
v1 + v2
1 + v1v2

c2
(12)

This formula preserves the invariant speed c, is symmetric between frames, and alters
only the relative velocity. It does not mix space and time coordinates directly, but rather
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provides the correct transformation for the rate of change of position across frames without
invoking spatial contraction or time dilation in its derivation.

In SR2, velocity addition is treated in exactly the same way . Though traditionally
derived via Lorentz transformations, one can show that the same result follows directly from
the invariant energy–momentum relation [3, 7]:

E2 = p2c2 +m2c4.

Noting that relativistic velocity can be written as

v =
p c2

E
,

adding two velocities v1 and v2 while enforcing the single invariant E2 = p2c2+m2c4 repro-
duces the same velocity-addition law—no coordinate mixing needed. In SR2, where space
and time both emerge algebraically from this energy–momentum invariant, the derivation
is identical.

Thus, SR2 recovers Einstein’s velocity-addition formula not as an imposed rule, but
as a natural consequence of the energy-momentum relationship. The invariance of c and
the nonlinearity of high-speed velocity addition arise organically from the same adaptive
structure that governs energy, momentum, and emergent spacetime.

Einstein’s velocity addition law, though historically linked to Lorentz transformations,
stands apart: it transforms no spacetime coordinates directly. In SR2, it resides exactly
where it belongs—as a direct expression of energy dynamics.

Adapting Spacetime vs Transforming Spacetime Coordinates

Having established how spacetime emerges from the universal energy field ε, we can
now examine how this energy-first approach fundamentally changes our understanding of
relativistic effects.

It is critical to understand the difference between classic SR and SR2 when it comes to
adapting spacetime. In special relativity, the Lorentz transformation [1] serves a critical role:
it ensures the relationships among energy, momentum, space, and time remain covariant
across all inertial frames when time and space are independent properties. It ensures this
covariance by transforming the time and space coordinates themselves from one
observer’s reference frame to another. Each inertial observer occupies a distinct coordinate
system, and the Lorentz transformation re-maps these coordinates in such a way that the
form of the physical laws—especially the energy-momentum relationship—remains invariant.

This transformation is not just a mathematical convenience; it’s a structural requirement
of Einstein’s postulates [3] – if time and space are independent properties. Relative velocity
between frames demands a redefinition of both time and space in order to preserve the
consistency of physical law. Thus, time is dilated, lengths are contracted, and simultaneity
becomes frame-dependent—not because the objects or intervals change intrinsically, but
because the coordinate system itself is transformed to maintain covariance.

SR2 approaches this problem from a fundamentally different perspective. In SR2, space
and time are not absolute backgrounds, nor are they independently transformed from one
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observer to another. Instead, they are dynamically scaled intervals, emerging directly
from the relative energy. This reformulation retains a single, unified coordinate space
across all frames. What changes is not the coordinate system, but the algebraic scale of
emergent intervals in response to the relative energy between frames.

In SR2, emergent time and space intervals are defined in terms of energy relationships:

te =
ℏ
Er

, xe =
ℏ
p
, p =

√
E2

r −m2c4

c
(13)

As total relativistic energy Er increases—due to relative motion between frames—te de-
creases (time dilation), xe contracts (length contraction), and p increases (momentum gain).
These are not coordinate transformations. They are algebraic responses: intrinsic rescal-
ings of the emergent intervals due to energy dynamics. The same coordinate system applies
in all frames, but what each interval means—in terms of observable duration, distance, or
momentum—scales with energy.

This distinction is crucial. Whereas Lorentz transformations [1] map one frame’s coor-
dinates onto another’s to enforce consistency, SR2 holds the coordinate structure constant
and lets the emergent intervals within it scale. In effect, Lorentz transforms the frame-
work; SR2 adjusts the interval magnitudes. Both preserve covariance, but through different
mechanisms. In Lorentz relativity, consistency is imposed; in SR2, consistency is emergent
from the algebraic structure of energy and its relationships.

This leads to a more transparent physical interpretation. In SR2, relativistic effects are
not the result of shifting coordinate systems or rotating spacetime axes [2]. They are direct
consequences of energy scaling emergent intervals—measurable, consistent, and grounded
in the same energy-momentum relationship that anchors all relativistic behavior. There’s
no need to redefine time or space between observers. Instead, observers measure different
outcomes because the energy they bring to the system changes how emergent time and space
intervals scale—within the same coordinates.

Time and Spatial Derivative Scaling

When transforming between coordinate systems, as is done in special relativity via the
Lorentz transformation [1], the rules of calculus dictate that all time and spatial derivatives
must also transform. This is governed by the chain rule, which relates derivatives in one
coordinate system to those in another. For instance, a time derivative in one frame must
be expressed in terms of both time and space derivatives from the other frame:

d

dt′
=

dt

dt′
· d

dt
+

dx

dt′
· d

dx

This process is necessary to preserve consistency when coordinates themselves are being
redefined. However, it introduces a structural complication: the form of the derivative
changes. Without careful reapplication of transformation rules at each level, the differential
operators may no longer preserve covariance. Maintaining consistency across transformed
derivatives often requires additional adjustments or reformulations to ensure that the equa-
tions of motion, field equations, or wave equations still hold their correct relativistic form.
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In contrast, SR2 does not transform derivatives—it scales derivatives within the same
coordinate system. Consider:

d

dt01
= Γ

d

dt11
(14)

where Γ = Er/mc2 is the energy scaling factor derived from our emergent interval
relationships; d

dt11
is the time derivative of the observed frame in the observed frame; and

d
dt01

is the time derivative of the observed frame in the observing frame. The subscript defines

the frame of the derivative (1) and the superscript defines the frame of the observer (0 =
rest frame; 1 = moving frame).

This is simple algebraic scaling of emergent intervals, not a structural transformation.
The form of the derivative remains unchanged. The derivative on the left side of the equation
and the derivative on the right side of the equation are the exact same derivative . They
are identical, except the one on the right has been scaled by Γ to give us the adapted time
derivative on the left. This preservation of derivative structure is especially important in
quantum mechanics [8], where maintaining the form of the wave equation is essential for
consistency.

That said, scaling derivatives comes with its own constraints:

1. Scaling can only be applied within a fixed coordinate system. It is valid
because the coordinate system itself remains unchanged.

2. The scaling factor must be constant with respect to the derivative being
taken.

3. The scaling factor must be independent of the function being differentiated.

Fortunately, in SR2, all of these conditions are satisfied. The scaling factors—such
as Γ for time derivatives and 1

Γ for spatial derivatives—are treated as constant during
differentiation, because they emerge from the energy relationships external to the function
whose evolution we are tracking.

This means that in SR2, derivatives aremore stable under relative motion. They do not
require re-expression in transformed coordinates, nor do they introduce cross terms from the
chain rule. They simply scale according to the emergent interval relationships derived from
relative energy, preserving both form and meaning. This allows SR2 to maintain full co-
variance using algebraic scaling of intervals, rather than coordinate mappings—streamlining
the connection between energy dynamics and temporal evolution.

Mapping from Spacetime Dependence to Energy Dependence

With spacetime’s emergence from ε established, SR2 requires systematic methods for
transforming traditional physics formulations (where spacetime coordinates are independent
variables) into their energy-dependent counterparts. Here we present two complementary
approaches, both governed by the fundamental scaling factor:

Γ(x) =
Er(x)

mc2
.
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1. Direct scaling for emergent intervals and derivatives

For equations involving simple emergent intervals or differential operators, direct alge-
braic scaling provides a straightforward transformation. Using our fundamental emergent
intervals te = ℏ/Er and xe = ℏ/p, we scale both the intervals and their derivatives:

For emergent intervals:

dte −→ Γ dte, dxi
e −→ 1

Γ
dxi

e

For derivatives:
∂

∂te
−→ Γ

∂

∂te
,

∂

∂xi
e

−→ 1

Γ

∂

∂xi
e

.

This approach maintains the structural form of equations while properly accounting for
energy dependence through emergent interval scaling. For instance, Faraday’s law trans-
forms from:

∇×E+
∂B

∂te
= 0 −→ ∇×E+ Γ

∂B

∂te
= 0,

directly incorporating time dilation through emergent interval scaling without requiring
coordinate transformations or altering Maxwell’s structural form.

2. Tetrad mapping for geometric objects

When dealing with objects that inherently couple time and space indices—such as metric
tensors, Dirac matrices, or stress-energy tensors—direct scaling becomes insufficient. For
these geometric objects, we introduce an energy-dependent tetrad that emerges directly
from our fundamental emergent interval relationships, building on the work of Weyl[12] and
Cartan[14].

The tetrad mediates between the energy-independent Minkowski metric ηab and the
emergent energy-dependent metric. The tetrad one-forms (with frame index a and coordi-
nate index µ) are:

eaµ(Er) = diag
(
1
Γ , Γ, Γ, Γ

)
,

with inverse (coordinate index µ, frame index a):

ea
µ(Er) = diag

(
Γ, 1

Γ ,
1
Γ ,

1
Γ

)
,

where Γ = Er

mc2 emerges from our emergent time interval relationship.

The emergent metric is then derived from the tetrad:

gµν(Er) = ηab e
a
µ(Er) e

b
ν(Er) = diag

(
Γ−2, −Γ2, −Γ2, −Γ2

)
.

3. Application: The Emergent Spacetime Interval

Using the energy-dependent metric derived from our emergent interval relationships, we
obtain the emergent spacetime interval:

ds2SR2 = gµν(Er) dx
µ dxν = Γ−2 c2 dt2 − Γ2 dx2.
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The emergence of time dilation and length contraction is now manifest through the algebraic
scaling factor Γ, derived directly from our emergent interval relationships, without requiring
Lorentz transformations between reference frames.

These complementary approaches—direct scaling and tetrad mapping—provide a com-
plete framework for recasting any spacetime-dependent physics into the energy-dependent
formulation of SR2. The direct scaling approach preserves mathematical simplicity where
possible, while the tetrad formalism handles cases where energy dependence must be inte-
grated into the geometric structure itself, ensuring a comprehensive and flexible transfor-
mation of physical theories.
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An Introduction to Hamiltonian Relativity

In the previous sections we’ve shown how energy not only drives relativistic effects but
serves as the source from which spacetime itself emerges. This core insight naturally leads
us to reconsider which mathematical framework best captures the relationship between
energy and spacetime. If energy dictates how time dilates and space contracts, then the
Hamiltonian formalism—where energy generates dynamics—is tailor made for relativistic
physics—particularly when the ultimate goal is to unify quantum mechanics with relativity.

Hamiltonian Relativity shares the same foundational premise as SR2: energy is the in-
trinsic, independent quantity from which spacetime emerges. Where SR2 demonstrated
that relativistic effects arise from algebraic scaling rather than coordinate transformations,
Hamiltonian Relativity formalizes this insight within a framework where energy naturally
takes center stage. This approach creates a seamless connection between relativistic princi-
ples—the invariance of light speed and the equivalence of inertial frames—and the elegant
machinery of Hamiltonian mechanics, where energy serves as the generator of dynamics in
both classical and quantum systems.

Unlike conventional approaches that treat spacetime and energy as separate, indepen-
dent entities, Hamiltonian Relativity positions energy as fundamental and independent, with
spacetime properties—time intervals, spatial distances, momentum—emerging as quantum
observables that adapt to the energy eigenstates of observed reference frames. This per-
spective shift simplifies the mathematical structure of relativity while offering a different
physical interpretation of space, time, and their relationship to energy.

In this section, we will develop the core concepts of Hamiltonian Relativity in the con-
text of SR2; establish the mathematical framework that unifies relativistic principles with
Hamiltonian dynamics; define the relativistic operators at the core of Hamiltonian Relativ-
ity, and lay the foundation for a full exploration in Part II of E-Theory where we construct
the Unified Wave Equation.

The Universal Hamiltonians: Hu and Ĥu

We define the primordinal scalar field as ε, and denote an arbitrary region of this
field as ε(x̄). In Hamiltonian Relativity, the same energy field that gives rise to emergent
spacetime also serves as its Hamiltonian. We therefore define the classical universal
Hamiltonian as

Hu(x̄) = |ε(x̄)| ≥ 0 (15)

As a function on the emergent manifold, Hu(x̄) determines every observer’s local clock
rate, spatial scale, and momentum.

A fundamental distinction of this approach is that the universal Hamiltonian is sourced
directly from the primordinal scalar energy field, making it inherently relativistic and spa-
tial, with the direction of movement defined by momentum. Unlike the traditional rela-
tivistic Hamiltonian, which must explicitly combine momentum and rest mass through the
relation H =

√
p2c2 +m2c4, momentum is already built into the structure of Hu itself.

This represents a profound conceptual shift: energy and momentum are no longer separate
contributions to be combined—they are different aspects of the same underlying field.
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Via Hamilton’s equations,Hu generates the classical equations of motion in SR2—recovering
relativistic velocity v = pc2/Er and the algebraic time and length scaling without requiring
coordinate transformations. The dynamics emerge directly from the energy landscape, with
the universal Hamiltonian determining both the motion of particles and the structure of
spacetime in which they move.

When we promote this classical structure to the quantum level, we obtain the universal
Hamiltonian operator :

Ĥu = Er|Er⟩ (16)

Here, Er is the total energy of ε(x̄) or the total relativistic energy of any arbitrary energy
system, and the operator acts by multiplication in the emergent position basis.

Significantly, this form of the quantum evolution equation no longer requires the explicit
inclusion of Γ as a multiplicative factor in the equation itself. Instead, Γ now emerges as
an eigenvalue-dependent quantity determined by the energy eigenvalues of the universal
Hamiltonian.

Because Ĥu is positive-definite by construction, its spectrum {Er} coincides with the
set of classical values |ε(x̄)|. For a system in an energy eigenstate |Er⟩:

Γ =
Er

mc2

This eigenvalue-derived Γ then determines how time and space intervals adapt around
that quantum system. When a measurement is performed, the system’s wavefunction re-
solves to an energy eigenstate, and the resulting eigenvalue Er fixes the local scaling of
spacetime through Γ. Higher energy eigenstates correspond to larger Γ values, causing
greater time dilation and length contraction.

The direct connection between energy eigenstates and spacetime scaling means that the
quantum evolution of a system and the relativistic properties of its surrounding spacetime
are governed by the same eigenvalues. Observable quantities such as transition frequencies,
oscillation periods, and characteristic wavelengths all adjust according to these eigenval-
ues through their associated Γ factors. This establishes a seamless link between quantum
behavior and relativistic effects, both emerging from the same underlying energy spectrum.

The Operators of Hamiltonian Relativity

Hamiltonian Relativity is built around five fundamental self-adjoint operators whose
eigenvalues define and emerge from the energy-driven spacetime:

Universal Hamiltonian

Ĥu = Er|Er⟩ , spec(Ĥu) ⊂ [0,∞). (17)
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Emergent Momentum

p̂u = −iℏ Γ̂−1∇ , [x̂, p̂u] = iℏ, spec(p̂u) ⊂ [0,∞). (18)

This energy-responsive momentum operator is both manifestly spectral and explicitly rel-
ativistic. It is constructed by scaling the standard differential momentum operator through
the inverse of the relativity operator Γ̂, which itself is defined by the spectrum of the univer-
sal Hamiltonian. In this way, p̂u encodes the geometry of energy: as Γ̂ adapts with energy,
so does the observable structure of momentum.

This construction reflects the core insight of spectral geometry, as explored in works
such as Levitin, Mangoubi, and Polterovich’s [15] and Canzani’s [16], where the spectra
of geometric operators determine manifold properties. However, Hamiltonian Relativity
departs from classical spectral geometry by rooting the operator structure not in spatial
manifolds, but in the relativistic energy field ε. Geometry does not shape energy; rather,
energy spectra generate geometry.

Relativity Operator

Γ̂|Er⟩ =
Ĥu

mc2
|Er⟩ , spec(Γ̂) ⊂ [0,∞) (19)

Proper Time Operator

τ̂ =
ℏ

mc2
I (20)

Time Interval Operator

t̂|Er⟩ = 1
2 (Γ̂τ̂ + τ̂ Γ̂)|Er⟩ (21)

The time interval operator elevates time to a relativistic quantum observable by adapting
emergent time intervals to the relative difference between an observing inertial frame and an
observed inertial frame. It is a self-adjoint symmetric operator commuting with Ĥu. Because
it is bounded below by τ̂ , and not conjugate to Ĥu, it avoids the classical constraint raised
by Pauli in his 1933 objection to time operators in quantum mechanics[17].

Hamiltonian Relativity as Spectral Geometry

Hamiltonian Relativity can be viewed as a minimal spectral geometry that directly en-
codes time dilation and length contraction through the spectrum of the universal Hamilto-
nian operator. This perspective illuminates how the eigenstructure of Ĥu itself constitutes
the geometry of spacetime, with its eigenvalues determining the scaling factors that govern
relativistic effects.
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An Energy-First Spectral Approach

Unlike traditional spectral geometric frameworks—such as Connes’ noncommutative ge-
ometry [13] where the Dirac operator defines the spectral structure on a pre-existing mani-
fold—Hamiltonian Relativity inverts this relationship entirely. Here, energy is the primary,
independent property from which spacetime itself emerges. The universal Hamiltonian Ĥu

is not merely an operator on a pre-defined spacetime; rather, its spectral properties funda-
mentally generate and define the geometric structure of spacetime.

This represents a radical departure from conventional approaches. In Connes’ formula-
tion and similar frameworks, the spectral triple (A,H,D) operates on an assumed spacetime
background, with the Dirac operator D encoding geometric information about an existing
manifold. By contrast, in Hamiltonian Relativity, the energy spectrum itself is ontologically
primary—spacetime does not exist independently of or prior to energy, but emerges directly
from it.

The Relativity Operator

At the core of this approach is the relativity operator:

Γ̂ =
Ĥu

mc2
(22)

This operator acts on energy eigenstates defined by Ĥu to produce the relativistic scaling
factor:

Γ̂|Er⟩ =
Er

mc2
|Er⟩ (23)

The scaling factor then determines how temporal and spatial intervals adapt from their
proper values:

t̂|Er⟩ = Γτ |Er⟩, xobs = Γ−1xrest (24)

This spectral approach reveals that relativistic scaling is not a coordinate transformation
but a direct consequence of the energy spectrum. Higher energy eigenvalues correspond to
greater time dilation and length contraction, with these effects encoded directly in the
eigenvalues of Ĥu.

The Spectral Metric

We can formalize this geometry by introducing a diagonal Lorentzian metric in the
spectral frame:

gµν = diag
(
Γ−2,−Γ2,−Γ2,−Γ2

)
(25)

This metric directly encodes time dilation in its temporal component (g00 = Γ−2) and
length contraction in its spatial components (gii = −Γ2). Unlike traditional approaches
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where these effects arise from coordinate transformations, here they emerge naturally from
the spectral properties of the universal Hamiltonian.

The invariant spacetime interval is then:

ds2 = gµνdx
µdxν = Γ−2c2dt2 − Γ2dx2 (26)

This expression makes manifest how the metric components adapt to energy without
requiring coordinate transformations.

The Tetrad-Spectral Mapping

To connect the spectral frame with coordinate representations, we employ the tetrad
formalism. The tetrad eaµ relates the energy-dependent metric gµν to the flat Minkowski
metric ηab:

gµν = eaµηabe
b
ν (27)

For the diagonal spectral metric, the tetrad components are:

e00 = Γ−1, eii = Γ (no summation) (28)

This tetrad maps spacetime vectors into the spectral frame:

V a = eaµV
µ (29)

Where the effects of time dilation and length contraction appear through the Γ-dependent
components.

Emergent Spacetime from Energy Eigenstructure

A crucial insight of Hamiltonian Relativity as spectral geometry is that it maintains a flat
Minkowski spacetime with a single set of coordinates, but this spacetime is not primary—it
emerges from the energy spectrum. The Riemann curvature tensor for this metric vanishes
identically:

Rρ
σµν = 0 (30)

Indicating that the emergent spacetime remains globally flat for inertial frames. How-
ever, the metric components themselves adapt to energy, creating what we might call a
”conformally scaled emergent space.” This approach separates the concepts of curvature
(which relates to acceleration and gravity) from scaling (which relates to uniform motion
and inertial frames).

The energy-first spectral geometry framework reveals that relativistic effects in inertial
frames are not manifestations of an independently existing spacetime undergoing transfor-
mations, but rather direct consequences of the spectral properties of energy, from which
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spacetime itself emerges. This perspective offers a more direct connection between quan-
tum mechanics and special relativity, with the Hamiltonian spectrum serving as the bridge
that unifies these domains through a common mathematical language, placing energy as the
primary, independent property of physical reality.

This perspective sets the stage for the more comprehensive unification to be developed
in subsequent parts of E-Theory, where curvature will emerge from non-uniform energy
distributions, completing the spectral geometric picture of relativistic quantum gravity—all
while maintaining energy, not spacetime, as the fundamental property of physics.

Looking Ahead: Toward the Unified Wave Equation

The foundations we’ve built in SR2 and Hamiltonian Relativity prepare the ground for
the next step: a unified quantum-relativistic wave theory. In Part II of E-Theory, we will:

• Redefine our tetrads and Hamiltonian generators to create a new class of relativistic
operators that define composite observables with eigenstructures driven by Ĥu.

• Construct the baseline Unified Wave Equation (UWE) using t̂ and p̂u within a
relativistic Hamiltonian framework.

• Extend this to specific wave equations, including Dirac and Proca, using the Hamil-
tonian generator — with special emphasis on Dirac.

• Formalize the UWE as a single universal equation spanning all energy regimes,
with a distinct Hilbert subspace for each customized representation of Ĥu.

• Recover both relativistic and non-relativistic dispersion relations as a continuous
spectrum of solutions within these subspaces.

• Emphasize how the spectral characteristics of Ĥu define not just quantum states
but also relativistic responsiveness — uniting dynamics and geometry in a common
framework.

This next phase completes the picture: from emergent spacetime and algebraic relativity,
to a universal framework where quantum mechanics and relativity are no longer patched
together — but emerge from a shared foundation of energy.
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The Implications of SR2

The reformulation of Special Relativity presented in this paper offers more than a
mathematical simplification—it represents a fundamental reconceptualization of relativis-
tic physics. By inverting the traditional dependency structure and treating energy as the
primary independent variable from which space, time, and momentum emerge, SR2 reveals
deeper structural insights while preserving all empirical predictions of Einstein’s frame-
work. This section explores the far-reaching implications of this energy-centric approach,
demonstrating how it not only reproduces the well-established phenomena of time dila-
tion and length contraction but also extends relativistic principles beyond scenarios of pure
kinematics, simplifies the mathematical apparatus of covariance, and resolves longstanding
conceptual tensions in relativistic quantum theory.

The central insight—that a single, unified covariant spacetime naturally emerges when
energy differences are treated as fundamental—carries profound consequences for both the-
oretical development and practical applications of relativistic physics. Rather than impos-
ing covariance through coordinate transformations between multiple reference frames, SR2
derives it organically from the invariant energy-momentum relationship, creating a more
coherent and intuitive framework where relativistic effects are direct manifestations of en-
ergy scaling. This perspective shift not only streamlines calculations but also illuminates
the deep connection between energy and the geometric properties of spacetime.

Generalization Beyond Relative Motion

Among these implications, perhaps most notable is how SR2 extends beyond the tradi-
tional boundaries of relativistic theory. While conventional approaches focus primarily on
the kinematics of relative motion, our energy-centric formulation offers broader applicability
to systems where energy differences, rather than velocity relationships, define the physics.

Perhaps the most significant implication is that SR2 extends relativistic effects beyond
scenarios involving only relative motion. Since relativistic phenomena in this framework
arise directly from energy differences between reference frames, SR2 naturally accommodates
any source of kinetic energy difference. This generalization applies to:

1. Systems where quantifying relative motion proves difficult, but energy differences are
well-defined

2. Cases involving energy transformations without relative motion, such as mass-energy
conversion processes (where Q - the released energy from conversion - can itself be
used to compute time dilation.

3. Quantum systems where energy eigenvalues, rather than classical trajectories, deter-
mine behavior

This energy-centric approach provides a more general framework for understanding rel-
ativistic effects as manifestations of energy dynamics rather than purely kinematic phenom-
ena.
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Simplified Covariant Formulations

A powerful consequence of SR2 is the straightforward method it provides for construct-
ing the covariant form of any equation involving energy dynamics. Traditional relativistic
formulations often require complex tensor calculus to ensure proper transformation behavior
under Lorentz transformations. In contrast, SR2 permits direct algebraic scaling of temporal
and spatial derivatives:

For time derivatives:
d

dt10
= Γ · d

dt11

For spatial derivatives:
d

dx1
0

=
1

Γ
· d

dx1
1

This property considerably simplifies the process of making equations covariant. Be-
cause SR2 retains a single coordinate space where quantities scale algebraically rather than
transform differentially, the structure of differential operators remains intact. This en-
ables straightforward relativistic extensions of equations ranging from classical mechanics
to quantum field theories, without the need for complex tensor manipulations or coordinate
redefinitions.

Resolution of the “Problem of Time” in Quantum Mechanics

SR2 addresses one of the persistent conceptual challenges in relativistic quantum the-
ory: the treatment of time. In standard quantum mechanics, time appears as an external
parameter rather than an observable, creating tension with the relativistic requirement that
time and space form a unified manifold.

In SR2, this tension is naturally resolved because:

1. Time is not an independent coordinate but a dependent quantity that emerges from
energy

2. Time dilation arises directly from the energy-time relationship without requiring co-
ordinate transformations

3. The time-dependent Schrödinger equation can be made fully covariant through simple
energy-dependent scaling

By deriving time from energy rather than treating it as a primitive backdrop, SR2
provides a more coherent integration of quantum and relativistic principles. Spacetime
becomes a dynamic background that adapts to energy distributions rather than a fixed
stage on which quantum systems evolve.

Unified Covariant Spacetime

SR2 naturally produces a single, unified covariant spacetime that adapts to relative
energy rather than requiring transformations between multiple coordinate systems. This
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represents a significant conceptual shift from traditional SR, where each inertial frame oc-
cupies its own spacetime coordinate system linked by Lorentz transformations.

In SR2, the invariant energy-momentum relationship:

E2
r = (pc)2 + (mc2)2 (31)

generates a spacetime that remains structurally consistent across all reference frames while
adapting its metric properties in response to energy differences. This approach:

1. Eliminates the proliferation of coordinate systems in relativistic calculations

2. Preserves invariance of the speed of light through direct energy-momentum constraints

3. Maintains consistent physical laws across reference frames through energy-dependent
scaling

4. Reduces mathematical complexity while deepening physical intuition

Mathematical Simplifications

The SR2 framework reduces the mathematical apparatus required for relativistic calcu-
lations in several ways:

1. Algebraic Rather Than Differential Relationships: SR2 replaces differential
transformations with direct algebraic scaling, simplifying the mathematical framework
needed to express relativistic effects.

2. Reduction of the Minkowski Four-Vector: The traditional four-vector formal-
ism is simplified to three fundamental algebraic relationships connecting energy to
momentum, time, and length.

3. Streamlined Energy Dynamics: The inclusion of relativistic effects in equations
with time or spatial derivatives becomes trivial, requiring only simple scaling factors
rather than full coordinate transformations.

4. Emergent Rather Than Imposed Consistency: Whereas Lorentz transforma-
tions impose consistency through coordinate mappings, in SR2, consistency emerges
naturally from the algebraic structure of energy relationships.

This mathematical economy not only simplifies calculations but also reveals deeper phys-
ical insights into the nature of relativistic phenomena as manifestations of energy dynamics.

Hamiltonian Relativity

SR2 may also be interpreted as the foundation for a broader framework we refer to as
Hamiltonian Relativity. In this view, the total relativistic energy Er is not merely a quantity
associated with motion but is reinterpreted as the Hamiltonian H that governs the emer-
gence of spacetime observables themselves. Time, space, and momentum are not primitive
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coordinates but frame-dependent quantities that scale algebraically from H, eliminating the
need for coordinate transformations. The scaling factor Γ becomes central—not as a trans-
formation parameter, but as the relational link between an observer’s proper time and the
energy-defined geometry of the system.

While this reinterpretation is not required to understand the results of SR2, it provides
a powerful conceptual lens through which to view the emergence of time and space from
energy. In future work, we will explore Hamiltonian Relativity more formally by introducing
self-adjoint operators for time intervals (t̂), and spatial intervals (x̂), emonstrating how these
observables arise directly from the underlying dynamic energy field.

Philosophical Implications of SR2

SR2 reframes the relationship between energy, space, and time in a way that clarifies
their conceptual roles in physics. In this formulation, time is not an absolute background
parameter, but a derived quantity: a mechanism by which we measure change. Space, like-
wise, is not a fixed container, but a relational structure that defines where change occurs.
But change itself—the driver of all measurable phenomena—requires energy. Without en-
ergy, there is no change; without change, there is no time. Thus, energy is not only primary
in the mathematical structure of SR2—it is primary ontologically. Time and space emerge
as observable consequences of energy-based evolution. In this sense, energy is not just the
generator of dynamics; it is the generator of the framework in which dynamics are even
possible.

This perspective also resolves the long-standing ambiguity surrounding the arrow of time.
If time is treated as a fixed coordinate, its symmetry under reversal leads to conceptual
paradoxes. But when time emerges from energy, its flow is intrinsically tied to the direction
of energy evolution. The system evolves forward through state space, and that forward
evolution defines the passage of time. Even if a system returns to a previous configuration,
the process by which it returns is still a forward evolution through new energetic states.
Backward evolution has no physical meaning. In SR2, the arrow of time is not imposed—it
is a necessary consequence of how energy gives rise to change.

Conclusion

The implications presented here suggest that SR2 is not merely an alternative mathe-
matical formulation of Special Relativity but a conceptual refinement that places energy at
the foundation of relativistic physics. By treating time and space as dependent properties
that algebraically scale with relative energy, SR2 provides a more integrated framework
that:

1. Generalizes relativistic effects beyond pure kinematics

2. Simplifies the mathematics of covariance

3. Resolves conceptual tensions in relativistic quantum theory

4. Unifies spacetime as a single adaptive manifold
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While retaining all empirical predictions of traditional Special Relativity, SR2 offers a
clearer physical interpretation where relativistic effects emerge directly from energy scaling
rather than coordinate transformations.
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SR2 and E-Theory: A Path to Quantum Gravity

The reformulation of Special Relativity presented in this paper—SR2—constitutes the
first step in a broader theoretical framework we call Energy Theory, or E-Theory. E-Theory
aims to establish energy as the fundamental quantity from which both spacetime and quan-
tum behaviors emerge, ultimately providing a coherent path toward unifying quantum me-
chanics and gravity. This unification requires addressing three persistent challenges that
have hindered previous attempts:

1. The Problem of Time in Quantum Mechanics — Standard quantum formula-
tions rely on a fixed temporal and spatial background, treating time as an external
parameter rather than a dynamical variable. This creates fundamental incompatibili-
ties with general relativity, where spacetime itself is dynamic.

2. The Problem of Energy in Relativity — In both special and general relativity,
energy is typically viewed as dependent on space and time, rather than as the primary
quantity from which spacetime emerges. Energy remains externally defined relative
to spacetime, rather than foundational to it.

3. The Problem of Localized Energy — Quantum mechanics spreads position in
spacetime through probability distributions, making precise localization impossible.
Yet, gravity requires definite energy-momentum localization to determine spacetime
curvature, creating an apparent incompatibility between quantum uncertainty and
gravitational determinism.

SR2 addresses these challenges by reconceiving relativity from an energy-first perspec-
tive. By treating energy as the independent variable, it demonstrates how time dilation,
length contraction, and momentum transformations naturally emerge as consequences of
relative energy differences between reference frames. This foundation provides the concep-
tual and mathematical framework necessary for resolving the broader difficulties in quantum
gravity.

The E-Theory Roadmap

The development of E-Theory follows a systematic progression through a series of forth-
coming papers, each building upon the foundations established in this work:

1. Part I: Special Relativity 2.0 (SR2) — The energy-based reformulation of special
relativity presented in this paper.

2. Part II: The Unified Wave Equation (UWE) — Extending SR2 to formalize
a single covariant time-dependent Schrödinger equation kinematically valid for all
energies, particles, and spins.

3. Part III: General Relativity 2.0 (GR2) — Applying the concept of spacetime
emerging from energy to reframe gravity, where curvature is sourced directly from an
underlying energy-density field.
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4. Part IV: Quantum Gravity Field Equations (QGFE) — Combining previous
elements to produce field equations that map GR2 to the quantum realm.

5. Part V: Energy-Based Quantum Field Theory (E-QFT) — Extending QGFE
to quantum field domains, redefining QED, QCD, and electroweak interactions in
terms of intrinsic energy and covariance.

6. Part VI: E-Theory Cosmology — Applying the emergent spacetime paradigm to
cosmological scales, offering novel explanations for phenomena currently attributed to
dark matter and dark energy.

Part II: The Unified Wave Equation

In this paper, we have demonstrated how the standard time-dependent Schrödinger
equation can be transformed into a covariant wave equation by scaling temporal and spatial
elements through the factor Γ and employing the relativistic Hamiltonian. This reformula-
tion is more than a mathematical convenience—it represents a fundamental reimagining of
how quantum systems evolve in response to energy rather than against a fixed backdrop of
time and space.

In Part II of E-Theory, we will expand this preliminary formulation into a comprehensive
mathematical framework for the Unified Wave Equation (UWE). This will include rigorous
definitions, formal derivations, and explicit connection to experimental observations. The
UWE shifts the quantum framework away from treating time as a parameter and instead
derives temporal evolution from changes in system energy, achieving what has been elusive
in relativistic quantum mechanics: a single covariant equation applicable across all energy
ranges and particle types.

A key advancement of the UWE is its ability to continuously bridge quantum behaviors
across all energy regimes. We’ll demonstrate how both non-relativistic and relativistic dis-
persion relations emerge naturally from a single relativistic Hamiltonian, eliminating the ar-
tificial boundaries between quantum mechanical treatments at different energy scales. This
continuity reveals specific, testable predictions about quantum behavior in trans-relativistic
regimes, particularly how confined quantum systems will linearize at higher energies.

We’ll also show how full relativistic effects can be recovered without the mathemat-
ical complications of square root operators. Instead, we’ll introduce a novel Γ-mapping
that projects reduced energy eigenvalues to full relativistic energy, providing a simpler yet
mathematically equivalent approach to relativistic quantum mechanics.

The UWE framework allows us to derive self-adjoint operators for temporal and spatial
elements and their derivatives. We’ll formally define the “tick operator” (for time) and its
derivative counterpart, alongside the length operator and its related derivatives, establishing
a complete operator algebra for energy-dependent spacetime variables.

Perhaps most significant are the philosophical and physical implications of a fully co-
variant wave equation. By freeing quantum mechanics from dependence on a fixed tempo-
ral/spatial background, the UWE reveals quantum evolution as fundamentally an energy-
phase relationship. This perspective resolves several longstanding issues in relativistic quan-
tum mechanics, including the Klein paradox, fermion doubling, and negative energy states,

31



by treating these as natural consequences of energy-phase relationships rather than mathe-
matical anomalies requiring correction.

The key insight of the UWE is that quantum evolution emerges directly from the system’s
total energy determining the rate of phase evolution. By reformulating quantum mechanics
through SR2’s energy-time relationship, the UWE inherits relativistic covariance automat-
ically while preserving quantum mechanical interpretations, creating a unified framework
that spans all energy scales.
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Part III: General Relativity 2.0

GR2 extends the SR2 framework to curved spacetime by advancing the principle that
spacetime geometry emerges from an underlying energy-density scalar field. This revolu-
tionary approach takes the energy-centric foundation of SR2 and applies it universally to
both inertial and non-inertial (accelerating) reference frames, completing the transition from
relativistic to gravitational physics.

Rather than energy curving an independently existing spacetime, as in standard general
relativity, GR2 views spacetime—both its relativistic properties and its curvature—as man-
ifestations of a single, universal energy scalar field denoted as ρ. For any arbitrary region,
there exists this foundational energy-density scalar field defining how spacetime adapts, with
both relativistic scaling and geometric curvature emerging directly from this field.

This reframing resolves a key conceptual tension in traditional GR: the circular rela-
tionship between energy-momentum and spacetime curvature. In Einstein’s field equations,
energy determines spacetime geometry, yet energy itself is defined by that very geometry.
GR2 breaks this circularity by establishing energy as ontologically prior to spacetime. The
energy-density scalar field directly determines the metric properties of emergent spacetime,
with the metric tensor components sourced from this field—magnitudes generating the diag-
onal elements (g00 and gii), while first and second-order derivatives of energy and momentum
(themselves functions of this field) generate the off-diagonal elements.

Perhaps most significant is GR2’s insight that relativistic effects need not be derived
from curvature itself, but from the gravitational potential associated with that curvature.
This potential should be interpreted as the relativistic energy confining the curvature of
spacetime. This distinction clarifies how both SR2 and GR2 share a unified mechanism:
energy directly determining the properties of spacetime, whether through relative motion
or through gravitational fields.

The field equations of GR2 express how energy-density distributions give rise to the
observed geometric properties we associate with gravity, preserving the empirical predictions
of Einstein’s general relativity while providing a more direct physical interpretation based
on energy as the primary quantity. This reformulation directly addresses the longstanding
”problem of energy” in general relativity. Energy is not dependent on time and space, nor
is it mapped into spacetime after the fact. On the contrary, spacetime emerges from energy,
with curvature sourced directly from the scalar field underlying any spacetime volume.

By establishing energy as truly fundamental and spacetime as emergent, GR2 creates a
framework where quantum and gravitational physics can share the same ontological founda-
tion—both arising from energy as the primary variable, thus opening a clearer path toward
their unified description.

Part IV: Quantum Gravity Field Equations

The Quantum Gravity Field Equations (QGFE) represent the culmination of our previ-
ous derivations, unifying quantum mechanics and gravity within the E-Theory framework.
Where Part II defined the Unified Wave Equation and Part III replaced the stress-energy
tensor with gravity coupled to an energy-density scalar field, Part IV completes the unifica-
tion by replacing the left side of the Einstein Field Equations with the UWE modified for
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curved spacetime.

This unification requires maintaining the wavefunction Ψ from the UWE while modi-
fying the Hamiltonian with a Geometric operator. This operator consists of two essential
components: first, a Ricci operator derived from the Einstein-Hilbert action that adapts
quantum evolution and propagation under the principle of least action in curved spacetime;
second, a curvature differential that defines the instantaneous rate of change for curva-
ture, directly addressing frame-lagging as the energy-density field ρ changes (either through
angular momentum or rapid changes in energy/volume).

While the metric is sourced in the same manner as in GR2, the QGFE does not employ
the metric as a shared reference frame. In the quantum realm, reference frames are inher-
ently transient and observer-dependent. Instead, we use the Christoffel symbols derived
from this metric to define the Ricci operators, maintaining mathematical consistency while
acknowledging the fundamentally different nature of quantum references.

The key implication of Part IV extends beyond the technical unification of quantum
mechanics and general relativity—it establishes a fully observer-dependent formulation for
existence itself. Within the energy scalar field, there is no fixed notion of where, when,
or even what. These properties are all defined by the observer’s reference frame that is
fixed onto this field. This represents a profound philosophical shift: physical reality is not
absolute but emerges relative to observation.

This observer-dependent perspective resolves the longstanding challenge of energy lo-
calization in quantum gravity. Energy is localized in the scalar field, but its position and
momentum are spread out relative to the observer’s frame of reference. This formulation
shares conceptual similarities with Rovelli’s Relational Quantum Mechanics [11], but E-
Theory provides the underlying mathematical formalism that connects observer-dependent
perspectives directly to an energy-based ontology.

The QGFE further addresses fundamental quantum phenomena—the measurement prob-
lem, complementarity, and entanglement—in terms of this observer dependence. Measure-
ment is simply the fixing of a reference frame that defines a transient snapshot in spacetime
of the underlying energy dynamics. Complementarity represents underlying energy proper-
ties that cannot be resolved in a single observation. Entanglement manifests as underlying
energy relationships that are observed in the same frame—even if that frame spans light
years or more in scope.

From this perspective, both quantum observations and relativistic effects are manifesta-
tions of the same underlying observer dependence. The QGFE avoids the need for quantizing
gravity in the traditional sense. Instead, gravity and quantum behavior become different
aspects of the same energy-based framework, eliminating the mathematical inconsistencies
that arise when attempting to force quantum field theory and general relativity together
without addressing their foundational incompatibilities.

By unifying quantum mechanics and gravity through energy as their common foundation,
the QGFE completes the core mathematical framework of E-Theory, establishing a coherent
description of physical reality that transcends the traditional boundaries between quantum
and relativistic domains.
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Part V: Energy-Based Quantum Field Theory

The impact of E-Theory as developed in Parts I-IV extends profoundly to quantum field
theory, not merely as a technical refinement but as a conceptual reimagining that addresses
longstanding challenges while creating new opportunities. E-QFT applies the energy-centric
framework to the domain of particle physics, with transformative implications for how we
understand fundamental interactions.

With energy established as the source of spacetime, we gain the opportunity to directly
couple particle interactions rather than mediating them exclusively through gauge fields
and gauge bosons. This direct coupling represents a radical departure from conventional
field theories, where forces are universally modeled as exchanges of virtual particles. In E-
QFT, the underlying energy field that gives rise to spacetime also provides the foundation for
direct energy-based interactions between particles, with force carriers emerging as particular
manifestations of these more fundamental couplings.

The algebraic scaling principles established in SR2 allow us to adapt field dynamics
to fully covariant formulations without requiring the complex mathematical apparatus of
conventional relativistic quantum field theory. Where traditional approaches necessitate
intricate renormalization procedures and regularization techniques to manage infinities, E-
QFT builds on finite energy relationships from the outset. The mathematics of quantum
field theory is significantly simplified by employing energy-based scaling rather than coor-
dinate transformations, just as we demonstrated for single-particle quantum mechanics in
the UWE.

E-QFT redefines quantum fields themselves as shared reference frames overlaying emer-
gent spacetime, with local gauge invariance arising inherently from the underlying energy
conservation principles rather than being imposed as external symmetry requirements. The
gauge symmetries of the Standard Model emerge naturally from the conservation proper-
ties of the energy field, explaining why these particular symmetries govern our universe.
What has appeared as mathematical consistency requirements in conventional formulations
becomes physically intuitive when viewed from the perspective of energy as the ontological
foundation.

Perhaps most significantly, because interactions can couple directly through the energy
field, E-QFT no longer requires infinite path integrals and perturbative expansions to calcu-
late interaction probabilities. Instead, we can define particle interactions as finite couplings
with determinate outcomes. The couplings themselves are certain and commuting opera-
tions, while individual quantum states remain uncertain and non-commuting. This resolves
the apparent paradox of determinate physical laws governing fundamentally probabilistic
quantum systems.

E-QFT also offers new perspectives on particle masses, mixing angles, and coupling
constants, suggesting these may be determinable from first principles within the energy-
based framework rather than requiring experimental input as free parameters. By grounding
particle physics in the same energy field that gives rise to spacetime itself, E-QFT moves
us closer to the ultimate goal of fundamental physics: understanding why our universe has
precisely the particles and interactions we observe, rather than merely cataloging them as
empirical facts.

Through this reformulation, E-QFT creates a unified description of all fundamental forces
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that preserves the empirical successes of the Standard Model while resolving its conceptual
and mathematical difficulties, providing a coherent foundation for understanding particle
physics as emergent from the same energy dynamics that generate spacetime itself.

Part VI: E-Theory Cosmology

The final part of the E-Theory framework applies its principles to cosmological scales,
developing a comprehensive model of the universe based on energy as the fundamental quan-
tity. This approach offers profound insights into cosmic evolution, structure formation, and
the apparent acceleration of universal expansion, with implications that challenge several
foundational assumptions of modern cosmology.

A key cosmological implication of E-Theory is that relativistic effects emerge from
energy-density differences between regions of spacetime. Since time and space emerge from
energy as dependent properties, variations in energy density across cosmic scales create what
we term Emergent Temporal Gradients (ETGs)—regions where time emerges at different
rates relative to an external observer’s perspective. These gradients are not imposed trans-
formations between coordinate systems but natural consequences of how spacetime emerges
from the underlying energy field.

This realization calls into question the cosmological principle as an effective descrip-
tion of our observations. While isotropy and homogeneity may still emerge as statistical
properties when averaged across all regions, E-Theory suggests they cannot be considered
foundational assumptions. Instead, cosmological observations must account for these ETGs,
which create apparent anisotropies not from actual physical differences but from different
temporal emergence rates across regions being observed simultaneously.

ETGs provide alternative explanations for phenomena currently attributed to dark mat-
ter. Large structure formation in the early universe would have evolved much faster than cur-
rently modeled due to the high energy densities present, addressing the apparent rapid devel-
opment of early cosmic structures. The flat rotation curves observed in galaxies—typically
attributed to dark matter halos—can be reinterpreted as observations between regions of
space (galactic core versus outer edge) evolving at different temporal rates, creating appar-
ent rotational anomalies when measured against our uniform temporal standard. Enhanced
or diminished gravitational lensing effects similarly emerge from ETGs modifying the path
of light as it traverses regions with different temporal emergence rates.

Similarly, cosmic acceleration receives a new interpretation through E-Theory. Rather
than requiring a cosmological constant or dark energy, the apparent acceleration emerges
naturally from large-scale energy-density gradients affecting how spacetime itself emerges
across cosmic distances. This provides a more parsimonious explanation for the observed
expansion while maintaining consistency with observational data.

Particularly significant is how E-Theory addresses anomalous observations in the very
early universe, which become comprehensible when accounting for the extreme temporal
gradients present during periods of much higher energy density. The cosmic microwave
background anisotropies, early galaxy formation, and other high-redshift phenomena may
all reflect not just the physical conditions of the early universe, but the fundamentally
different way time and space emerged from the primordial energy field.

By reframing cosmology through the lens of energy as the ontologically primary quantity,
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E-Theory offers a unified approach to understanding cosmic evolution that resolves apparent
anomalies without introducing additional parameters or exotic particles. This comprehen-
sive framework brings cosmology into alignment with the energy-based principles that, as
we have shown, provide elegant solutions across quantum, relativistic, and gravitational
domains.

Conclusion: SR2 as the Foundation for E-Theory

SR2 serves as the cornerstone for this ambitious theoretical program. By reformulating
special relativity from an energy-first perspective, it establishes the conceptual and mathe-
matical foundation necessary for all subsequent developments in E-Theory. The principles
demonstrated here—that time, space, and momentum emerge from energy as the indepen-
dent variable—provide the essential insights that carry through each stage of the framework.

While the full development of E-Theory spans multiple papers, the work presented in
this initial publication represents a crucial first step: demonstrating that even our most
well-established physical theories can be reframed more elegantly and intuitively when we
center energy as the fundamental quantity from which all other physical properties derive.
The path to quantum gravity begins with this essential shift in perspective.
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Summary

The trajectory of fundamental physics follows a clear pattern: each generation of physi-
cists confronts the most pressing conceptual challenges of their era, developing frameworks
that resolve the contradictions before them. Classical Special Relativity emerged from a spe-
cific set of anomalies—the Michelson-Morley experiment, the behavior of electromagnetic
fields, the search for absolute motion through a supposed aether. Einstein, Lorentz, and
Minkowski responded with brilliant mathematical transformations and geometric insights
that preserved the constancy of light speed while maintaining consistent physical laws across
inertial frames. They solved the problem placed before them: motion against a background
of fixed spacetime.

The advent of Quantum Mechanics introduced fundamentally different challenges rooted
in energy dynamics and probabilistic evolution. This created new tensions with the fixed
spacetime perspective of SR. Time appeared as an external parameter in quantum theory
while serving as a dynamic coordinate in relativity. How could the same quantity be both
fixed backdrop and evolving variable? Dirac and others crafted solutions that made quantum
mechanics work at relativistic velocities, brilliantly addressing the immediate mathematical
inconsistencies of their time.

Yet each solution, while resolving its contemporary problems, carried forward deeper
conceptual tensions. Today, at the interface between quantum theory and gravity, we face
what many consider the most fundamental challenge: the problem of time itself. Time’s
dual role—as external parameter in quantum mechanics and dynamic coordinate in relativ-
ity—has resisted resolution for decades.

SR2 and Hamiltonian Relativity represent the next natural step in this progression.
Rather than treating time as a fixed background or even as a coordinate to be transformed,
we recognize it as an emergent interval arising from energy relationships. By establishing
energy as the intrinsic, independent property from which spacetime emerges, this approach
dissolves the artificial separation between quantum evolution and relativistic adaptation.
Time becomes what it has always been in physics: a measure of change, now properly
grounded in the energy dynamics that drive all change.

This progression feels inevitable in hindsight—the logical extension of insights that began
with Einstein, Lorentz, and Minkowski, now applied to perhaps the biggest challenge of all:
the problem of time.

A Firm Foundation

This paper introduced Special Relativity 2.0 (SR2), a reformulation of relativistic physics
built on the fundamental recognition that energy, not spacetime, is the intrinsic independent
property of the universe. By treating momentum, time, and space as dependent quantities
that algebraically scale with relative energy, SR2 restores coherence to the structure of rel-
ativistic dynamics. Through this energy-centered framework, we derived covariant scaling
relationships for time and space, reproduced the empirical predictions of classical special
relativity, and demonstrated that relativistic effects arise naturally without requiring coor-
dinate transformations between reference frames.

The breakthroughs achieved in Part I are significant. First, we have simplified spe-
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cial relativity by defining a single, unified covariant spacetime that adapts dynamically to
relative energy differences between frames. Second, we have recovered the Lorentz factor
γ directly, but through an entirely algebraic derivation rooted in the energy-momentum
relationship, rather than through coordinate transformations. Third, we have introduced
the scaling factor Γ, equivalent to γ, which allows time and spatial derivatives to adapt
naturally to energy differences without invoking the chain rule or introducing transforma-
tion complications. Fourth, we have developed a comprehensive transformation mechanism
through tetrad formalism and the emergent metric, enabling the systematic mapping of
any spacetime-dependent formulation to an energy-dependent one while maintaining inher-
ent covariance. Fifth, we have introduced Hamiltonian Relativity, a reformulation where
relativistic effects emerge directly from the eigenstructure of the universal Hamiltonian, es-
tablishing a profound connection between quantum mechanics and special relativity. And
finally, we have freed physics from the need for fixed, frame-specific spacetimes requir-
ing differential transformations between separate coordinate systems—revealing a deeper,
energy-driven structure underlying relativistic phenomena.

This work represents the first step in a broader project: the development of E-Theory.
Part II will extend the foundations laid here by constructing the Unified Wave Equation, a
fully covariant reformulation of quantum mechanics integrated with special relativity, com-
plete with specific, verifiable novel predictions. Part III will adapt General Relativity to
the framework of intrinsic energy, creating a version of gravity where spacetime curvature
emerges dynamically from energy distributions rather than acting as an independent back-
ground. Finally, Part IV will culminate in the development of the Quantum Gravity Field
Equation, unifying quantum mechanics and general relativity into a single, coherent, covari-
ant framework. Through this progression, E-Theory will reveal that the divisions between
relativistic, quantum, and gravitational domains are not fundamental barriers, but artifacts
of perspective—barriers that energy-based dynamics can overcome.
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Appendix A - Relevant Examples

This appendix provides practical applications of SR2 through examples across various
physical domains. Rather than merely reproducing the predictions of Special Relativity,
these examples illuminate how SR2’s energy-centric approach simplifies relativistic calcu-
lations while maintaining full covariance. By treating relativistic energy as the primary
independent variable, SR2 reveals deeper connections between energy and spacetime that
remain obscured in traditional formulations. The following examples showcase how SR2 nat-
urally handles complex relativistic phenomena with straightforward algebraic scaling rather
than coordinate transformations, beginning with Maxwell’s equations—the cornerstone of
classical electrodynamics.

Maxwell’s Equations

Maxwell’s equations describe the dynamics of electric and magnetic fields and are founda-
tional to both classical and relativistic physics. In conventional special relativity, maintain-
ing the form of these equations across inertial frames requires transforming both coordinates
and derivatives using Lorentz transformations. This ensures covariance, but it introduces
structural complexity by altering how derivatives behave under motion.

SR2 avoids this entirely by preserving a single, shared coordinate space across all ob-
servers. Rather than transforming coordinates, this new formulation scales time and spatial
elements, and their derivatives, algebraically in response to energy differences associated
with relative motion.

In SR2, spacetime is not absolute—it emerges from the relative energy differences be-
tween frames:

Er = mc2 +K ′

where K ′ is the kinetic energy due to relative motion between frames. From this, we
define the scaling factor:

Γ =
Er

mc2
=

mc2 +K ′

mc2

This factor scales all time-based observables, including the time derivative:

t01 = Γ · τ1 ⇒ d

dt01
= Γ · d

dτ1

Let us now apply this to the dynamic Maxwell equations, which in differential form are:

∇× E⃗ = −∂B⃗

∂t

∇× B⃗ = µ0J⃗ + µ0ε0
∂E⃗

∂t
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In SR2, we scale the time derivatives using Γ:

∇× E⃗ = −Γ · ∂B⃗
∂t̄

∇× B⃗ = µ0J⃗ + µ0ε0 · Γ · ∂E⃗
∂t̄

These equations retain their original form, structure, and symmetry. The only change
is that the rate of field evolution is scaled by Γ—a direct, algebraic consequence of increased
kinetic energy due to relative motion.

Implications:

• No coordinate transformation is needed: All observers share the same spacetime,
with differences encoded entirely in energy.

• Covariance is preserved algebraically, not geometrically.

• Derivatives remain structurally intact: There are no cross-terms or chain-rule
complications.

• Field dynamics reflect energy directly: The greater the kinetic energy of relative
motion, the faster the apparent time evolution of fields—governed entirely by Γ.

This approach shows that SR2 not only preserves the predictions of special relativity,
but does so with cleaner mathematics and a more physically intuitive interpretation—where
energy, not geometry, drives the evolution of physical systems.

The Time-Dependent Schrödinger Equation

In standard quantum mechanics, the time-dependent Schrödinger equation (TDSE) de-
scribes how a wavefunction Ψ(x, t) evolves:

iℏ
∂Ψ(x, t)

∂t
= ĤΨ(x, t)

For relativistic systems, the Hamiltonian must account for the full energy of the parti-
cle—including rest mass and kinetic energy. This leads to the relativistic Hamiltonian:

Ĥr =
√
p̂2c2 +m2c4

In SR2, space and time are not transformed between coordinate systems—they are alge-
braically scaled in response to the total energy of relative motion. SR2 introduces two key
scaling factors:

• A time scaling factor:

Γ =
Er

mc2
=

mc2 +K ′

mc2

where K ′ is the kinetic energy difference.
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• A spatial scaling factor:

Sx =
x

x0
=

mc2√
E2

r −m2c4
=

1

Γ

These scaling factors adjust the form of the TDSE while maintaining a single shared
coordinate space.

The covariant time-dependent Schrödinger equation becomes:

iℏΓ · ∂Ψ(x, t)

∂t
= ĤrΨ(x, t)

with the momentum operator scaled by 1
Γ :

p̂ = −iℏ
1

Γ
∇

Substituting this into the Hamiltonian:

Ĥr =

√
(−iℏ

1

Γ
∇)2c2 +m2c4 =

√
−ℏ2(

1

Γ
)2c2∇2 +m2c4

So the full covariant TDSE becomes:

iℏΓ · ∂Ψ(x, t)

∂t
=

√
−ℏ2(

1

Γ
)2c2∇2 +m2c4 ·Ψ(x, t)

Implications

• No coordinate transformations are applied. Observers share a single spacetime,
and the dynamics adapt via scaling—not remapping.

• The structure of the differential equation is preserved. Time and spatial
derivatives retain their form, avoiding the chain rule complexities of Lorentz-transformed
systems.

• Relativistic effects emerge algebraically through Γ and Sx, reflecting how total
energy modifies the evolution of the wavefunction.

• SR2 simplifies relativistic quantum mechanics, preserving empirical predictions
while offering a cleaner, more intuitive formalism.

It is important to emphasize that this covariant formulation of the TDSE represents a
significant advancement beyond traditional relativistic quantum mechanics. Unlike conven-
tional approaches that require different equations for different energy regimes or particle
types, this formulation applies universally across all energy scales—from non-relativistic to
ultra-relativistic—and is fundamentally independent of spin dynamics. The equation main-
tains its form and validity regardless of whether we are describing electrons, photons, or
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any other quantum entity. This universality emerges naturally from treating energy as the
primary independent variable, allowing quantum evolution to be described through a single
unified framework. While spin dynamics remain an essential aspect of quantum behavior,
they are orthogonal to the energy-time relationship established here. In Part II of E-Theory,
we will fully formalize this insight into the Universal Wave Equation (UWE), providing a
comprehensive treatment that explicitly addresses relativistic spin within the energy-first
framework. This will complete the unification of quantum mechanics and special relativity
into a single coherent mathematical structure applicable to all particles and energy regimes.

Summary

The example developed in this section highlights the profound structural power of SR2.
By applying energy scaling rather than coordinate transformations, we were able to derive
a covariant time-dependent Schrödinger equation that naturally recovers both relativistic
and non-relativistic dispersion relations. Remarkably, the full relativistic Hamiltonian dy-
namically reduces to the standard Schrödinger Hamiltonian in the low-energy limit without
requiring approximations, discarded terms, or coordinate redefinitions. This seamless recov-
ery underscores that non-relativistic quantum mechanics emerges naturally from a unified,
covariant framework rather than existing as a separate theory patched onto relativistic dy-
namics.

It is important to emphasize that the true strength of SR2 lies not merely in its reformu-
lation of familiar equations, but in the application of this reformulation as we move toward
a deeper unification of physical law. In Part II of E-Theory, we will explicitly build upon
the foundation laid here to craft a fully covariant Unified Wave Equation that integrates
quantum mechanics with special relativity, preserving covariance across all energy scales.
This next step will not only consolidate relativistic quantum mechanics into a single coher-
ent structure but will also introduce specific, verifiable novel predictions emerging naturally
from the SR2 framework. The full unification with general relativity will be developed in
Part III, where the dynamic spacetime of GR will be incorporated into the energy-scaling
structure revealed here.

In this way, SR2 does more than reorganize equations—it reorders our foundational
assumptions, providing a simpler, more coherent pathway toward the true unification of
physics.
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Appendix B: Reflections on the Meaning of Energy

In this appendix, we step back from formal derivations to explore the conceptual essence
of Special Relativity 2.0 (SR2). While the main text demonstrates the mathematical ad-
vantages and formal implications of our energy-centric approach, here we offer a series of
thought experiments that illustrate how energy—rather than space, time, or velocity—forms
the foundation of relativistic physics. These reflections require no equations; they rely only
on logic and imagination to reveal energy’s role as the true invariant in relativistic phenom-
ena.

SR2 proposes that time and space are emergent, relational constructs derived from the
evolution of energy. When we move beyond coordinate-dependent formulations and reframe
our understanding around energetic relationships, relativity becomes not only mathemati-
cally simpler but conceptually clearer. Each of the following thought experiments illuminates
this perspective shift.

1. Energy Is All We Need

Consider two observers, Alice and Bob, each floating in deep space, far from gravitational
influences, watching a spacecraft pass between them. Classically, their primary reference
for comparison is relative velocity: they see the spacecraft moving, measure its speed, and
deduce relativistic effects accordingly. But suppose neither Alice nor Bob directly measures
velocity at all. Instead, each possesses only a device capable of directly measuring the
energy of incoming signals—say, photons emitted from a known standard source aboard the
spacecraft.

Alice notes the photons she receives are shifted to a higher frequency (blueshifted),
indicating higher energy. Bob, positioned differently, observes photons shifted to a lower
frequency (redshifted), indicating lower energy. Crucially, neither Alice nor Bob needs to
explicitly know the spacecraft’s velocity to understand their differing experiences. Instead,
their instruments reveal directly measurable differences in photon energy. From this energy
difference alone—without any explicit notion of velocity—they independently deduce how
their perception of time and space must differ.

This scenario demonstrates clearly that velocity itself is not ontologically fundamental.
What matters fundamentally is the measurable energy difference. The velocity traditionally
used in Special Relativity serves merely as an indirect proxy, a convenient geometric abstrac-
tion to reach what truly matters: energy. In SR2, this scenario crystallizes the key insight
that it is the energy relationships—directly observable and measurable—that inherently
shape each observer’s experience of spacetime, time flow, and spatial dimensions. Energy
thus emerges not merely as a useful derived concept but as the foundational ontological
quantity from which all relativistic phenomena directly follow.

2. What Is Time?

Imagine a universe entirely static—completely devoid of change. Every particle, wave,
or structure is frozen indefinitely. In such a universe, what would distinguish one moment
from another? Indeed, the very notion of a ”moment” loses all meaning unless there is
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another moment to compare it with. Time itself becomes a meaningless concept without
change, as there is no progression or evolution from one state to another.

Similarly, consider the concept of space in this static universe. If every particle, every
object is eternally locked in place, how could ”here” be differentiated from ”there”? If
nothing moves or can move, then distance loses all meaning, and the idea of distinct locations
collapses entirely. Everything becomes indistinguishable from ”here.”

From this thought experiment, it becomes clear that time and space fundamentally
require change to have any meaning at all. Without change, there is neither a ”then” nor a
”now”; without movement, there is no ”here” or ”there.” But what drives change? The only
fundamental cause is energy. It is energy that allows systems to evolve, particles to interact,
and phenomena to unfold. Thus, energy emerges not merely as a measurable quantity within
the universe but as the foundational ontological essence that defines and enables the very
concepts of space and time themselves.

3. The Arrow of Time

What does it mean for a system to evolve? At its most fundamental level, evolution is
the change of energy. A system transitions from one energy state to another: A → B → C.
This sequence defines progression—not because time commands it so, but because energy
changes.

What if we reverse the order? C → B → A? Even then, this isn’t truly reversal. It’s just
another path through energy space. If a system moves from C to B to A, it’s not reversing
evolution—it’s continuing it. Regression is just another phase of progression. The sequence
A → B → C → B → A is still evolution. There is no fundamental reversal—only continued
transition.

This reframes the concept of time. If time is emergent from energy—as SR2 claims—then
it must follow the same rule: it does not exist independently but flows as energy evolves.
Time has an arrow not because of entropy or causality, but because energy never stands
still. The evolution of energy is the passage of time.

4. Relativity Simplified

Finally, consider the spacetime interval itself. In classical SR, it is defined geometrically
as: ds2 = c2dt2 − dx2 This expression encodes the invariant distance between events in
spacetime, preserved across all reference frames. In SR2, the same invariance holds—but its
origin is algebraic, not geometric. Space and time scale inversely with respect to energy. As
space contracts, time dilates proportionally, such that the quantity ds2 remains constant.

We can visualize this using simple trigonometry. Imagine a right triangle where one leg
represents space, the other leg time, and the hypotenuse is the invariant spacetime interval.
As one leg shortens, the other lengthens. The triangle adjusts, but the hypotenuse—the
interval—remains the same. In SR2, this is not a geometric coincidence but a direct result
of how energy scales observables:

a2 + b2 = c2

In this picture, c2 (not the speed of light, but the squared interval) remains invariant.
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This provides a more intuitive understanding of relativity: the universe simply adjusts the
proportions of time and space to maintain a constant energetic relationship. The constancy
of ds2 is thus a natural consequence of energy’s scaling of observables—not a feature imposed
by a geometric transformation.

Again, we return to the same conclusion: energy is the only truly invariant quantity.
Time and space adapt. In SR2, ds2 is not merely a preserved length—it is the clearest
signature of energy’s primacy.
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Appendix C - Equivalence of SR2 with Classical Relativ-
ity

At its core, Special Relativity 2.0 (SR2) and Einstein’s classical Special Relativity de-
scribe the same physical reality through different conceptual lenses. Though SR2 inverts the
traditional dependency structure—positioning energy as the primary variable from which
spacetime emerges, rather than treating spacetime as the fundamental backdrop—it recovers
all the empirical predictions and mathematical structures of Einstein’s theory with perfect
fidelity.

This equivalence is anchored in the correspondence between two key quantities: the
Lorentz factor γ of classical relativity and the energy scaling factor Γ of SR2. In classical
relativity, γ = 1/

√
1− v2/c2 emerges from coordinate transformations between reference

frames. In SR2, Γ = Er/mc2 = (mc2 +K ′)/mc2 arises directly from energy relationships.
Despite their entirely different origins, these factors are mathematically identical: Γ = γ.

This identity is not coincidental but reveals a deeper truth: the phenomena tradition-
ally attributed to spacetime deformation can be understood more fundamentally as man-
ifestations of energy dynamics. SR2 demonstrates that time dilation, length contraction,
momentum transformation, and every other relativistic effect can be derived purely from
how energy scales observable quantities, without requiring multiple coordinate systems or
differential transformations.

In the following correspondences, we will systematically demonstrate how SR2’s energy-
centric framework recovers each cornerstone of classical relativity—from conservation laws
to light propagation to field transformations—establishing that SR2 is not merely an alter-
native formulation but a complete and equivalent theory offering new physical insights into
the nature of relativity.

Establishing Theoretical Equivalence

The fundamental challenge in presenting Special Relativity 2.0 (SR2) is demonstrating its
equivalence with classical Special Relativity. While SR2 fundamentally reframes relativistic
physics by positioning energy as the primary independent variable, it must satisfy a critical
criterion: recovering all empirical predictions of Einstein’s original theory.

Our equivalence demonstration proceeds through a systematic approach:

1. Show that SR2 mathematically reproduces the Lorentz factor γ

2. Demonstrate that every key relativistic phenomenon can be derived using SR2’s energy-
first framework

3. Prove that the predicted outcomes are identical to classical Special Relativity

4. Reveal how SR2 achieves these results through fundamentally different conceptual
foundations

The core insight is simple yet profound: SR2 does not seek to replace Special Relativity,
but to reveal a more fundamental perspective on its underlying dynamics. By treating energy

47



as the intrinsic, independent variable from which spacetime emerges, SR2 offers a deeper
understanding of relativistic phenomena without altering their observable manifestations.

In the following sections, we will systematically demonstrate this equivalence across
multiple domains of relativistic physics, establishing SR2 not as an alternative theory, but
as a more fundamental conceptualization of the same physical reality.

Scaling Derivatives

In previous sections, we have demonstrated how the tetrad mapping and emergent space-
time metric in SR2 successfully recover the geometric structure of relativistic spacetime. We
have also shown why derivatives can scale with the factor Γ rather than requiring differential
transformations. Here, we provide an independent demonstration of why this scaling works,
establishing a crucial piece of the correspondence between SR2 and classical relativity.

In SR2, we begin with the diagonal tetrad that maps between the energy-momentum
domain and emergent spacetime:

ea
µ =


e0̂

t 0 0 0

0 e1̂
x 0 0

0 0 e2̂
y 0

0 0 0 e3̂
z

 =


Γ 0 0 0
0 Γ−1 0 0
0 0 Γ−1 0
0 0 0 Γ−1


From this tetrad, we can define the frame-derivative operator:

Da = ea
µ ∂µ

This immediately gives us:

D0̂ = e0̂
t ∂t = Γ ∂t

Dî = eî
xi

∂xi = Γ−1 ∂xi

These expressions are exactly the simple algebraic scaling rules we introduced in SR2:

∂t → Γ ∂t

∂xi → Γ−1 ∂xi

Thus, applying the tetrad to the partial derivatives ∂µ is mathematically equivalent to
the SR2 scaling of derivatives. This demonstrates that our approach of directly scaling
derivatives with Γ is not merely a convenient shortcut but a rigorous consequence of the
tetrad formalism.

Unlike in classical relativity, where derivatives transform via the chain rule when moving
between reference frames (introducing cross-terms and significant mathematical complexity),
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SR2’s approach keeps derivatives structurally intact while scaling them algebraically. This
preserves the form of differential equations across all energy regimes while ensuring full
covariance.

This correspondence is particularly important because it shows that SR2’s simplified
approach to handling derivatives in relativistic equations is mathematically equivalent to the
more complex transformations required in the traditional formulation, further establishing
the complete equivalence between the two theories.

Mass-Energy Equivalence

Einstein’s famous equation E = mc2 stands as one of the most profound insights of
classical relativity. We now demonstrate how this relationship emerges naturally within the
SR2 framework, providing further evidence of the equivalence between the two theories.

In SR2, we begin in the root energy-momentum domain, where the 4-momentum satisfies
the invariant relationship:

E2
r − p2c2 = m2c4

For a particle ”at rest” in this domain (with zero momentum, p = 0), its energy is simply:

Er = mc2

This already establishes the mass-energy equivalence at the foundational level of the
theory. However, to show how this appears in emergent spacetime, we must apply the
tetrad mapping.

Consider an observer whose own spectral energy equals the particle’s rest energy, Eobs =
Er. In this case, SR2’s diagonal tetrad components reduce to:

Γ(Er) =
Er

mc2
= 1

e0̂
t = Γ = 1, eî

xi

= Γ−1 = 1

We can then map the root-domain 4-momentum of the particle at rest, P a
rest = (Er,0),

into emergent spacetime:

pt = e0̂
t · Er = 1 · Er = Er = mc2

In emergent spacetime, this time-component pt functions as the Hamiltonian—the gen-
erator of time translations—and thus represents the energy of the system. Therefore, we
directly recover the famous result E = mc2.

For particles with non-zero momentum, the total energy in the root domain is:

Er =
√

p2c2 +m2c4
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After tetrad mapping, its emergent-spacetime energy becomes:

pt = Γ(Eobs) · Er

When Eobs = Er, this yields the standard relativistic energy-momentum relation:

pt =
√

p2c2 +m2c4

This derivation reveals a profound insight: in SR2, mass-energy equivalence is not an ad-
ditional postulate or consequence—it is built into the very foundation of the theory through
the energy-momentum invariant. By identifying the spectral rest point Er = mc2 and
using the SR2 tetrad with Γ(Er) = 1, the emergent-spacetime Hamiltonian immediately
reproduces E = mc2.

The elegance of this derivation highlights a key advantage of SR2’s energy-first per-
spective: relationships that required novel insights in classical relativity emerge naturally
and inevitably from SR2’s fundamental structure. Mass-energy equivalence is not merely
recovered in SR2—it is rendered obvious from the theory’s first principles.

Light Propagation & Null Geodesics

The invariant speed of light stands as perhaps the most fundamental postulate of special
relativity. In SR2, this invariance emerges not from spacetime geometry but directly from the
energy-momentum relationships that precede and give rise to spacetime itself. We approach
this correspondence from two complementary perspectives: first from the universal energy
field ε(x) that exists prior to spacetime, and then through the emergent spacetime formalism.

Light in the Pre-Spacetime Energy Field

In E-Theory, before spacetime emerges, there exists a fundamental scalar field ε(x) that
defines energy distribution throughout the universe. Within this field, we define the invariant
energy-momentum interval:

dΣ2 =
dE2

c2
− dp2

This interval establishes the fundamental classification of energy-momentum properties:

dΣ2 = 0 :
dE

dp
= c

This condition, where dΣ2 = 0, defines the null or light-like intervals in the energy-
momentum domain. It establishes that, for massless excitations like photons, the ratio of
energy change to momentum change is exactly the constant c. This is the deepest origin of
light’s invariant speed—it is encoded in the energy-momentum interval itself, prior to any
notion of spacetime.

When we integrate this differential relationship for a massless particle, we get:

E2
r − p2c2 = 0 ⇒ Er = |p|c
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This relationship establishes the light-cone structure that determines causality directly in
the energy domain, before spacetime coordinates even exist. The invariance of light speed is
therefore not a property of spacetime but a fundamental characteristic of energy-momentum
relationships in the universal field ε(x).

Light in Emergent Spacetime

To show how this pre-spacetime property manifests in the emergent spacetime frame-
work, we apply the tetrad mapping. For a fixed observer energy Eobs, a photon’s root-domain
momentum P a = (Er,p) maps to emergent-spacetime momentum:

pµ = ea
µP a ⇒ pt = ΓEr, px

i

= Γ−1pi

The emergent metric in SR2 is:

gµν(Eobs) = diag
(
Γ−2,−Γ2,−Γ2,−Γ2

)
Using this metric, we can verify that the photon’s 4-momentum remains null in emergent

spacetime:

gµνp
µpν = Γ−2(ΓEr)

2 − Γ2(Γ−1|p|)2

= E2
r − |p|2c2

= 0

Since gµνp
µpν = 0 holds regardless of Eobs, every observer recovers the same light-cone

structure. This confirms that the light-cone, originally established in the pre-spacetime
energy domain, maps consistently to emergent spacetime.

To demonstrate the invariance of the speed of light explicitly, we must distinguish be-
tween coordinate differentials and physical measurements. The infinitesimal physical time
interval and physical length are:

dτ = e0̂
µdxµ = Γ−1dt

dℓ = e1̂
µdxµ = Γdx

Imposing the null condition in these frame components:

0 = ηabD
aDb = (+1)dτ2 − 1

c2
dℓ2

Therefore:

dℓ = c · dτ ⇒ dℓ

dτ
= c

This demonstrates that the speed of light is invariant at value c in the physical orthonor-
mal frame of any observer.
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The Deeper Meaning of Light’s Invariance

What this dual perspective reveals is profound: the invariance of the speed of light is
not fundamentally a property of spacetime geometry, as traditionally presented in special
relativity. Rather, it is a direct consequence of the energy-momentum relationships in the
underlying universal field ε(x) that precedes spacetime.

In SR2, light’s invariant speed is not something that needs to be imposed as a postulate
or maintained through coordinate transformations. It is automatically preserved because the
null condition dΣ2 = 0 in the energy domain maps directly to the null condition gµνdx

µdxν =
0 in emergent spacetime.

This correspondence establishes a deeper understanding of light’s special role in physics:
photons travel at speed c not because spacetime geometry requires it, but because the
relationship between energy and momentum in the fundamental field ε(x) defines it to be
so. Spacetime itself emerges in a way that preserves this fundamental energy-momentum
relationship.

Therefore, SR2 not only recovers the invariance of light speed from classical relativity but
reveals it to be even more fundamental than previously understood—a property of energy
relationships that exists prior to spacetime itself.

Particle Dynamics & Equations of Motion

The behavior of particles under the influence of forces represents a critical test for any
relativistic theory. Here, we demonstrate how SR2 recovers the correct relativistic dynamics,
deriving the geodesic equation of motion from first principles in the energy domain.

Root-Domain Action with Mass-Shell Constraint

In SR2, we begin with an action principle in the root energy-momentum domain. Intro-
ducing a worldline parameter σ, root-domain coordinates Xa(σ), and conjugate momenta
Pa(σ), we define the action:

S =

∫
dσ

[
Pa

dXa

dσ
− λ

2

(
PaP

a −m2c2
)]

This action includes a Lagrange multiplier λ that enforces the mass-shell constraint
PaP

a = m2c2. Variation with respect to Pa yields:

dXa

dσ
= λP a

And variation with respect to Xa gives:

dPa

dσ
= 0 ⇒ PaP

a = constant

These equations describe the motion of a free particle in the energy-momentum do-
main: the 4-momentum remains constant along the particle’s trajectory, and the coordinate
evolution is proportional to the 4-momentum.
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Mapping to Emergent Spacetime

To connect this root-domain dynamics to observable motion in spacetime, we apply
SR2’s tetrad mapping:

xµ = ea
µXa, pµ = eaµPa

Since the tetrad ea
µ depends only on the observer’s fixed energy, we can rewrite the

action in terms of emergent spacetime variables:

S =

∫
dσ

[
pµ

dxµ

dσ
− λ

2

(
gµνpµpν −m2c2

)]
where gµν is the inverse of the emergent metric. This reformulated action now describes

the motion of a particle in the emergent spacetime.

Derivation of the Geodesic Equation

Varying this emergent-spacetime action with respect to pµ gives:

dxµ

dσ
= λgµνpν ⇒ pµ =

1

λ
gµν

dxν

dσ

Variation with respect to xµ yields:

dpµ
dσ

− 1

2
(∂µg

αβ)pαpβ = 0

Combining these equations and reparameterizing by proper time τ (so that pµ = mdxµ

dτ ),
we obtain the familiar geodesic equation:

d2xµ

dτ2
+ Γµ

αβ(g)
dxα

dτ

dxβ

dτ
= 0

where Γµ
αβ are the Christoffel symbols derived from the emergent metric gµν .

The Significance of Recovering the Geodesic Equation

The recovery of the geodesic equation from SR2’s energy-domain action is significant for
several reasons:

First, it demonstrates that free particles in SR2 follow exactly the same trajectories as in
classical relativity, despite the fundamentally different conceptual framework. This ensures
full empirical equivalence between the theories.

Second, it reveals that the principle of least action in the energy-momentum domain nat-
urally maps to the principle of extremal proper time in emergent spacetime. This mapping
preserves the fundamental variational character of physical laws across the two formulations.
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Third, it shows that the geodesic equation—traditionally derived from the geometry of
spacetime—can be obtained directly from energy-momentum considerations. This reinforces
SR2’s central thesis that energy dynamics are more fundamental than spacetime geometry.

For inertial observers, the emergent spacetime has zero curvature (all Christoffel symbols
vanish), and the geodesic equation reduces to:

d2xµ

dτ2
= 0

This confirms that uniform rectilinear motion is preserved in SR2, in accordance with
the principle of relativity.

For accelerated motion and the influence of forces, we can extend this formalism by
introducing appropriate potential terms in the action. The resulting equations of motion
will mirror those of classical relativity, but with the conceptual advantage of being derived
from energy principles rather than geometric postulates.

The equivalence established here completes our demonstration that SR2 fully recovers the
dynamics of particles in special relativity. What differs is not the mathematical prediction
or observable outcome, but the ontological foundation: in SR2, particles follow geodesics
not because spacetime geometry dictates it, but because the underlying energy-momentum
relationships require it.

Uniform-Motion Metric Structure

A foundational property of special relativity is that inertial reference frames correspond
to flat Minkowski spacetime. Here, we demonstrate that SR2 exactly recovers this feature:
any observer with constant spectral energy Eobs experiences an emergent spacetime that is
perfectly flat, just as in classical relativity.

Emergent Metric for Constant Energy

For an observer with fixed energy Eobs, the emergent metric in SR2 is given by:

gµν(Eobs) = diag
(
Γ−2,−Γ2,−Γ2,−Γ2

)
where Γ = Γ(Eobs) = Eobs/mc2 is a constant value with no dependence on spacetime

coordinates. Critically, since Eobs is constant for an inertial (non-accelerating) observer, Γ
is constant throughout the observer’s frame.

Vanishing Christoffel Symbols

To establish that this spacetime is flat, we compute the Christoffel symbols, which char-
acterize the connection between neighboring tangent spaces in a manifold. These symbols
are defined as:

Γρ
µν =

1

2
gρσ

(
∂µgσν + ∂νgσµ − ∂σgµν

)
54



Since each component gµν is constant across spacetime (all ∂αgµν = 0), every Christoffel
symbol vanishes:

Γρ
µν = 0 for all ρ, µ, ν

This is a defining characteristic of flat spacetime—there is no curvature-induced connec-
tion between neighboring regions.

Zero Riemann Curvature

To formally confirm the flatness of this spacetime, we compute the Riemann curva-
ture tensor, which fully characterizes the curvature of a Riemannian or pseudo-Riemannian
manifold. The Riemann tensor is defined as:

Rρ
σµν = ∂µΓ

ρ
νσ − ∂νΓ

ρ
µσ + Γρ

µλΓ
λ
νσ − Γρ

νλΓ
λ
µσ

With all Christoffel symbols vanishing, this expression immediately reduces to:

Rρ
σµν = 0

This confirms that the emergent spacetime has zero curvature—it is exactly flat.

Equivalence to Minkowski Spacetime

Although the components of the emergent metric differ from the standard Minkowski
metric ηµν = diag(1,−1,−1,−1) by factors of Γ−2 and Γ2, these factors are constant. The
metric therefore represents a simple rescaling of the Minkowski metric, not a fundamental
change in spacetime geometry.

Indeed, through a coordinate transformation of the form:

t′ = Γ−1t, x′
i = Γxi

the emergent metric transforms into the standard Minkowski form:

g′µν = diag(1,−1,−1,−1) = ηµν

This confirms that the emergent spacetime for any inertial observer in SR2 is exactly
Minkowski spacetime, differing only by a global scaling that has no effect on curvature.

Significance for SR2

The demonstration that SR2 yields flat spacetime for all inertial observers has profound
significance:

First, it confirms that SR2 fully satisfies Einstein’s first postulate: the laws of physics
take the same form in all inertial reference frames. Flat spacetime is a necessary condition
for this equivalence.
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Second, it establishes that SR2 preserves the fundamental distinction between special
and general relativity. In SR2, as in classical SR, inertial observers experience flat spacetime,
while accelerating observers (to be addressed in GR2) will experience curved spacetime.

Third, it shows that even though SR2 derives spacetime properties from energy, the
resulting geometry matches exactly what classical relativity postulates a priori. This corre-
spondence strengthens the case that energy is indeed the more fundamental property, since
it naturally generates the correct spacetime structure without requiring separate geometric
postulates.

The fact that constant Eobs produces flat spacetime is not coincidental—it reflects the
deep connection between energy and spacetime geometry that lies at the heart of both
SR2 and, ultimately, general relativity. What classical relativity treats as a fundamental
property of spacetime—its flatness for inertial observers—SR2 reveals to be a consequence
of the constant energy associated with uniform motion.

Collision Kinematics & 4-Momentum Conservation

Conservation of 4-momentum in particle collisions is a cornerstone of relativistic physics,
providing a key test for any theory of relativity. Here, we demonstrate how SR2’s energy-first
approach naturally preserves these conservation laws while offering a more direct physical
interpretation.

Root-Domain 4-Momentum and Its Conservation

In SR2, we begin in the root energy-momentum domain, where each particle i carries a
4-momentum:

P a
i =

(
Ei,pi

)
Physical collisions in this domain obey the conservation law:∑

i∈in

P a
i =

∑
j∈out

P a
j

This formulation directly expresses the conservation of energy and momentum as fun-
damental to the root domain, prior to any mapping to spacetime coordinates. The conser-
vation principle itself resides in the energy-momentum relationships, not in the properties
of spacetime.

Mapping to Emergent Spacetime via the Tetrad

To connect this root-domain conservation to observable physics in spacetime, we apply
SR2’s tetrad mapping. For a fixed observer energy Eobs, the diagonal tetrad components
are:

e0̂
t = Γ(Eobs), eı̂

xi

= Γ(Eobs)
−1
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with all other components zero, ensuring that the emergent metric satisfies:

gµν(Eobs) ea
µ eb

ν = ηab

Each root-domain momentum is mapped to emergent-spacetime momentum via:

pi
µ = ea

µ P a
i

This yields the specific components:

pi
t = ΓEi, pi

xi

= Γ−1 pii

Conservation in Emergent Spacetime

The critical insight is that the tetrad ea
µ depends only on the observer’s energy, not on

the individual particle momenta P a
i . This means it can be factored out of any sum over

particles. Therefore: ∑
i∈in

pi
µ =

∑
i∈in

(
ea

µ P a
i

)
= ea

µ
∑
i∈in

P a
i

= ea
µ

∑
j∈out

P a
j

=
∑
j∈out

pj
µ

This demonstrates that conservation of 4-momentum in the root domain directly implies
conservation of 4-momentum in emergent spacetime. The tetrad mapping preserves the
conservation law across the transition from energy domain to spacetime coordinates.

Frame Independence

A key question is whether this conservation law remains consistent across different ob-
server frames. Consider two observers with tetrads ea

µ and ẽa
µ, measuring emergent mo-

menta:

pµ = ea
µP a

p̃µ = ẽa
µP a

Since both derive from the same conserved root-domain sum
∑

P a, each observer inde-
pendently finds that: ∑

pµin =
∑

pµout∑
p̃µin =

∑
p̃µout
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Moreover, the two sets of emergent momenta are related by the linear map:

p̃µ = (ẽa
µeaν) p

ν

This demonstrates that conservation holds in any frame without requiring additional
Jacobian factors or coordinate mixing. The conservation law maintains its form across all
inertial reference frames, exactly as required by the principle of relativity.

Significance for Relativistic Collisions

This derivation has profound implications for our understanding of relativistic collisions:

First, it establishes that SR2 fully recovers the standard collision kinematics of special
relativity. All empirical predictions regarding scattering angles, energy distributions, and
reaction thresholds will be identical to those of classical relativity.

Second, it reveals that momentum conservation is more fundamental than previously
recognized. Rather than being a consequence of spacetime symmetries (as suggested by
Noether’s theorem in classical relativity), conservation of 4-momentum in SR2 is a direct
property of the energy-momentum domain itself, from which spacetime emerges.

Third, it simplifies calculations by avoiding the need for explicit Lorentz transforma-
tions between reference frames. The linear tetrad mapping connects different observers’
measurements directly, without requiring the intermediate step of transforming to a privi-
leged coordinate system.

This correspondence completes our demonstration that SR2 fully reproduces the collision
kinematics of special relativity while providing a more direct physical interpretation based
on the primacy of energy. What classical relativity derives from spacetime symmetries, SR2
reveals to be inherent in the more fundamental energy-momentum relationships.

Field Transformations

A critical test for any relativistic theory is its ability to properly transform field equa-
tions—particularly electromagnetic fields—between reference frames. Here we demonstrate
how SR2 preserves the covariance of field equations through its tetrad formalism, without
requiring the complex coordinate transformations of classical relativity.

Root-Domain Fields and Equations

In the energy-momentum domain of SR2, we begin by defining the electromagnetic field
strength tensor and current density:

Fab(E, p), Ja(E, p)

These satisfy Maxwell’s equations in their standard tensor form:

∂[aFbc] = 0 (Homogeneous/Bianchi identity)

∂aFab = Jb (Inhomogeneous equations)

where ∂[aFbc] denotes antisymmetrization over the indices a, b, and c.
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Tetrad Mapping to Emergent Spacetime

To connect these root-domain fields to observable physics in spacetime, we apply SR2’s
tetrad mapping. The field strength tensor and current density project into emergent space-
time as:

Fµν(x) = eaµ ebν F
ab

Jµ(x) = eaµ J
a

Since the tetrad ea
µ depends only on the observer’s constant energy (not on spacetime

coordinates), this mapping is straightforward and introduces no additional complexity.

Homogeneous Equations (Bianchi Identity)

The homogeneous Maxwell equations in emergent spacetime follow directly from their
root-domain counterparts:

∇[µFνρ] = eµ
a eν

b eρ
c ∂[aFbc]

= 0

This immediately preserves the form of Faraday’s law of induction and the absence of
magnetic monopoles. The antisymmetry of the field strength tensor and the properties of
the exterior derivative ensure that these equations maintain their form exactly, with no
additional terms arising from the tetrad mapping.

Inhomogeneous Equations

For the inhomogeneous Maxwell equations (Ampère’s law with Maxwell’s correction),
we use the tetrad-covariant derivative ∇µ. In an inertial SR2 frame, this connection has
vanishing Christoffel symbols, allowing us to write:

∇µFµν = gµσ ∇µFσν

= ea
µ eb

σ ∂aF b
c e

c
ν

= ebν ∂
aFab

= Jν

Thus, the inhomogeneous equations ∇µFµν = Jν maintain exactly the same form in
emergent spacetime as in the root domain.

Comparison with Classical Relativity

In classical relativity, preserving the form of Maxwell’s equations across reference frames
requires applying the Lorentz transformation to both the coordinates and the fields them-
selves. This introduces coupling between electric and magnetic fields that varies with relative
velocity—a magnetic field in one frame becomes partly an electric field in another.
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SR2 achieves exactly the same transformation behavior, but through the more direct
tetrad mapping from the root domain. The components of Fµν transform according to:

Fµν = eaµ ebν F
ab

This yields the standard mixing of electric and magnetic fields between reference frames,
but derived directly from the energy-based tetrad rather than from coordinate transforma-
tions.

Extension to General Tensor Fields

The same approach extends naturally to any tensor field T a···
b··· in the root domain.

Projecting each index with ea
µ or eaµ yields the emergent spacetime tensor with identical

transformation properties:

Tµ···
ν··· = ea

µ · · · ebν · · ·T a···
b···

This guarantees that all field equations—whether electromagnetic, Dirac (spinor), Klein-
Gordon (scalar), Proca (massive vector), or stress-energy tensors for fluids—transform iden-
tically in SR2 as they do in classical relativity.

Significance for Field Theories

The preservation of field transformation properties in SR2 has profound significance:

First, it ensures that all field-based predictions of classical relativity—from electromag-
netic waves to relativistic quantum fields—are exactly recovered in SR2, maintaining com-
plete empirical equivalence between the theories.

Second, it demonstrates that the covariance of field equations is not fundamentally a
property of spacetime geometry, but of the underlying energy-momentum relationships.
The tetrad mapping from energy domain to spacetime preserves this covariance without
requiring explicit coordinate transformations.

Third, it simplifies the mathematical treatment of field transformations by deriving
them directly from the energy-based tetrad, rather than imposing them through coordinate
changes. This approach not only matches the empirical predictions of classical relativity
but offers a more direct connection to the physical energy relationships underlying field
behavior.

This correspondence completes our demonstration that SR2 fully reproduces the field
transformation properties of special relativity, ensuring that all physical predictions—from
light propagation to electromagnetic induction to relativistic quantum effects—remain iden-
tical between the two formulations.

1.1 The Equivalence of Simultaneity

One of the profound conceptual insights of Einstein’s Special Relativity is the relativity
of simultaneity—the realization that events simultaneous in one reference frame are not
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necessarily simultaneous in another. In developing Special Relativity 2.0 (SR2), we must
establish that this aspect is preserved, despite SR2’s “adaptive” metric.

1.1.1 The Challenge of SR2’s Adaptive Spacetime

SR2 proposes that spacetime itself emerges from energy dynamics, with metric compo-
nents scaled by ΓO = Eobs/(mc2). The resulting “curved flat space” is geometrically flat
(zero Riemann tensor) for constant ΓO, yet its rulers and clocks are uniformly stretched or
compressed.

1.1.2 The Tetrad Formalism Solution

We demonstrate equivalence in four steps:

1. Define an orthonormal tetrad for the SR2 metric.
With c = 1, the line element for observer O is

dΣ2 = Γ−2
O dt2 − Γ2

O dx2, gtt = Γ−2
O , gxx = −Γ2

O.

An orthonormal tetrad e(A)
µ satisfying gµνe(A)

µe(B)
ν = ηAB is

e(0)
µ = (ΓO, 0), e(1)

µ = (0, 1/ΓO).

2. Rescale to a local Minkowski frame.
Introduce

tM = Γ−1
O t, xM = ΓO x,

so the metric becomes ηµν = diag(+1,−1) and the tetrad legs align with ∂tM , ∂xM
.

3. Apply a local Lorentz boost in tangent space.
Let S′ move at velocity v (rapidity ϕ, tanhϕ = v) in the (tM , xM ) frame. The boosted
time-leg is

ẽ(0′)
A = (coshϕ, − sinhϕ) = (γv, −γv v),

and simultaneity in S′ implies
dtM = v dxM .

4. Map back to the SR2 coordinates.
Using dtM = Γ−1

O dt and dxM = ΓO dx,

Γ−1
O dt = v (ΓO dx) =⇒ dt = Γ2

O v dx.

Hence the simultaneity hyperplane in the original (t, x) chart is

dt−
(
Γ2
O v

)
dx = 0.

In particular, for an SR2 observer whose own scaling is ΓO = 1—i.e. whose (t, x) are
already Minkowskian—this reduces exactly to

dt− v dx = 0,

recovering Einstein’s criterion.
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Conclusion. By constructing the SR2 tetrad, rescaling to a local Minkowski frame, applying
the usual Lorentz boost, and mapping back, one finds that the tilt of simultaneity is generally
dt = Γ2

O v dx. When the observer’s own energy-scale factor ΓO equals unity, this reproduces
the standard SR result dt = v dx, demonstrating full equivalence of simultaneity within SR2.

Closing Summary: The Complete Equivalence of SR2 and Classical
Relativity

Throughout this section, we have systematically demonstrated the mathematical and
physical equivalence between Special Relativity 2.0 (SR2) and Einstein’s classical Special
Relativity. Despite beginning from fundamentally different foundations—SR2 with energy
as the primary independent variable, classical relativity with spacetime as the independent
backdrop—both theories yield identical empirical predictions across all physical domains.

We have established this equivalence through several key correspondences:

1. Scaling of Derivatives: We showed that SR2’s algebraic scaling of derivatives by the
factor Γ is mathematically equivalent to the differential transformations of classical
relativity, but with significantly reduced complexity. The frame-derivative operator
Da = ea

µ∂µ directly yields the scaling rules ∂t → Γ∂t and ∂xi → Γ−1∂xi , preserving
the form of differential equations while ensuring covariance.

2. Mass-Energy Equivalence: We derived Einstein’s famous E = mc2 directly from
SR2’s energy-momentum invariant, showing that it emerges naturally from the root-
domain relationship Er = mc2 for a particle at rest. Far from being a novel insight in
SR2, mass-energy equivalence is built into the very foundation of the theory.

3. Light Propagation & Null Geodesics: We demonstrated that SR2 fully preserves
the invariance of light speed and the causal structure of spacetime. More profoundly,
we showed that these properties emerge directly from the energy-momentum interval

dΣ2 = dE2

c2 − dp2 in the pre-spacetime energy field ε(x), revealing them to be even
more fundamental than traditionally understood.

4. Particle Dynamics & Equations of Motion: We derived the geodesic equation
of motion from SR2’s energy-domain action principle, proving that particles follow
identical trajectories in both theories. This established that the principle of least action
in the energy domain maps directly to extremal proper time in emergent spacetime.

5. Uniform-Motion Metric Structure: We proved that any inertial observer in SR2
experiences a perfectly flat emergent spacetime, with all Christoffel symbols and the
Riemann tensor vanishing. This confirms that SR2 preserves the fundamental distinc-
tion between special and general relativity.

6. Collision Kinematics & 4-Momentum Conservation: We showed that conser-
vation of 4-momentum in the root energy domain implies conservation in emergent
spacetime, with the tetrad mapping preserving this law across all reference frames
without requiring explicit Lorentz transformations.

7. Field Transformations: All tensor fields (e.g. electromagnetic, spinor, fluid) map
under the tetrad exactly as under Lorentz boosts, preserving the form of their field
equations.
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8. Simultaneity: SR2 recovers the same hyperplane structure as special relativity. The
ensure the equivalence of simultaneity formalism between SR and SR2.

This systematic correspondence establishes that SR2 is not merely an alternative math-
ematical formulation of relativity—it is a completely equivalent theory that preserves all
empirical predictions while offering a more fundamental perspective on the nature of phys-
ical reality.

The significance of this equivalence extends beyond mathematical consistency. It reveals
that what has traditionally been attributed to the intrinsic geometry of spacetime can be
more fundamentally understood as emergent from energy relationships. The phenomena of
time dilation, length contraction, relativistic mass increase, and the invariance of the speed
of light—all traditionally derived from the properties of Minkowski spacetime—are shown
in SR2 to be direct consequences of how energy scales observable quantities.

This inversion of dependencies—treating energy as primary and spacetime as emer-
gent—not only simplifies the mathematical apparatus of relativistic physics but also provides
deeper physical insights. In SR2, relativistic effects are not imposed by coordinate trans-
formations but arise naturally from the scaling properties of energy. The covariance of
physical laws is not enforced by the geometry of spacetime but is inherent in the invariant
energy-momentum relationships that underlie all physical phenomena.

Moreover, by freeing physics from dependence on a fixed spacetime background, SR2
provides a natural pathway toward unification with quantum mechanics and general rela-
tivity. As will be developed in subsequent parts of E-Theory, the recognition that spacetime
emerges from energy dynamics rather than serving as their independent backdrop resolves
key conceptual tensions between these theories.

In conclusion, SR2 preserves every empirical success of Einstein’s special relativity while
reframing it in terms of energy as the fundamental independent property. This reframing
not only simplifies the mathematics of relativity but also deepens our understanding of its
physical meaning. The complete equivalence established in this section provides a solid
foundation for the continued development of E-Theory as a unified framework for physics.
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Author’s Note

The author holds a Bachelor of Science in Engineering from the United States Mili-
tary Academy at West Point (class of 1983), where the curriculum emphasized advanced
mathematics, applied physics, and systems analysis. Through decades of independent re-
search—including topics such as the nature of time, quantum evolution of energy states,
field theory, gauge symmetry, and Einstein’s equations—the author formulated E-Theory’s
core postulate: energy is intrinsic and independent, while time and space are emergent and
dependent.

To accelerate the development and rigorous analysis of this complex theory, the author
made extensive use of several large language models (LLMs) and AI-powered research tools
over a period of several years. These tools, which included both publicly available and
proprietary systems, provided capabilities that were instrumental in the development of
E-Theory.

The author maintains full responsibility for the core theoretical concepts, interpreta-
tions, content and conclusions presented in this work. The AI tools served as powerful
research assistants, enabling a more rapid and thorough exploration of the complex ideas
and mathematical formalism of E-Theory.
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