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Abstract

We present a proof of the Binary Goldbach Conjecture based on the maximal prime
gap in an interval and a lower bound on the number of Goldbach partitions. By showing
that the maximum prime gap gmax in the interval (0, 2m) is always less than m, we
conclude that R(2m) ≥ 1 for all m > 1.
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1 Introduction

The Binary Goldbach Conjecture posits that every even number greater than 2 is the sum
of two prime numbers. Despite being numerically verified up to very large bounds, a general
proof has remained elusive. This paper introduces a novel approach using an identity derived
from a harmonic relationship involving the mean of Goldbach partitions and a function of
prime gaps.

2 Methodology

The methodology section will lay the background for the proof of the Binary Golbach con-
jecture.

Prime gap osscilations give Goldbach partition counts an oscillatory nature. The number
of Goldbach partitions is therefore a function of prime gap.

Let R(2m) denote the number of Goldbach partitions of 2m, and m be the mean of all
primes involved in its partitions. The identity below [7]:∑

m

mR(2m)
= 1 (1)

Additionally the prime gap condition below holds for every Goldbach partition :∑
m =

m2

2gw
, 1 ≤ gw ≤ gmax(1, 2m) < m ≥ 2 (2)

1



Where gw is the weighted prime gap. (It is necessary to clarify that that gmax(1, 2m) < m
is valid because for p(1, 2m) gmax

p
< m

2m−1
. This in turn implies gmax < m as a direct

implication of Bertrand’s postulate. The proof that will follow this section will validate this
statemen ). When we substitute this into the identity we obtain the equation:

m2

2gw
= mR(2m) ⇒ R(2m) =

m

2gw
(3)

The boundary conditions above imply that

m

2gmax

≤ R(2m) ≤ m

2
(4)

Bertrand’s postulate stipulates that:

gmax(1, 2m) < m (5)

Substituting (5) into (6):

1

2
< R(2m) ≤ m

2
(6)

We have arrived at the proof of the Binary Goldbach conjecture before finishing the paper.
We will identify some general truths about Goldbach partitions: 1. The Number of Goldbach
partions is a mean of means of primes with a sum of 2m. Therefore R(2m) take the general
equation form:

R(2m) =

∑
m

m
(7)

and therefore the identity [?] above holds true for every Goldbach partition. 2. Again
fundamentally , for non semiprime even numbers (and semiprime even numbers with more
than 1 Goldbach partition count ), the counting function is determined by the prime gap
Formula below

R(2m) =

∑
g

gm
(8)

where gm is the mean of the Goldbach partition prime gaps. The two Goldbach partition
laws combined means

gm
∑

m = m
∑

g (9)

The selection of the form of equation (2) needs a some Justification.
-The Goldbach partition count is affected by prime gap oscillation. We will therefore

examine this matter.

3 Prime gap oscillation

Let nco be a composite odd number. The gap gn beween two consecutive primes greater than
2 is given by:

gn = 2(1 + nco) (10)
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The formula-(10) means that a gap of 8 is generated whenever there are 3 composite odd
numbers in between two successive primes and so forth.

Composite odds are therefore the key players in prime gap oscillation.
The paper [6], uses Shared Least Prime Factors (SLPF) to classify composite numbers.
All composite numbers sharing the same least factor belong to one specific class.
Some key results in the paper show that:
- all composite numbers in the interval (1, 32 − 1] share a Common Least Prime Factor

of 2. Im this particular interval the gap between odd primes does not oscillate. It is 2
(constant).

- On the other hand Composite numbers in the interval [32, 52 − 1] have least prime
factors of 2 and 3. The prime gaps in this interval oscillates between 2 and 4.

- Composite numbers in the interval [52, 72 − 1] have least prime factors of 2, 3 and 5.
The prime gaps in this interval oscillate between 2, 4 and 6. One can continue to study the
gap trends in higher intervals.

We now examine the behaviour of Goldbach partition of composite numbers in the interval
[4,10] subject to Goldbach partition primes in the interval (1, 8). These primes are [2, 3, 5,
7]

-Take 2m = 10 ⇒ m = 5 put m = 5 among the primes we notice it coincides with 5
and lies exactly between 3 and 7. This means 10 has 2 Goldbach partitions. The number
of Goldbach partitions can be determined using the formula m−1

2g
where g = gap between

primes.
-Take: 2m = 8 ⇒ m = 4. 4 is the mean of 3 and 5. The number of Goldbach partitions

can be determined using the formula m
2g

-Take: 2m = 6 ⇒ m = 3. 3 is the mean of 3 and 3 The number of Goldbach partitions
can be determined using the formula m−1

2g

- Finaly Take: 2m = 4 ⇒ m = 2. 2 is the mean of 2 and 2 The number of Goldbach
partitions can be determined using the formula m

2
.

-Binary Goldbach partition values are integers. The Binary Goldbach conjecture as-
serts that these values should be greater than 0. The formulations above vary because the
denominators may not be perfect divisors of m.

- To bring uniformity a weighted gap gw so that the counting function takes the form:

R(2m) =
m

2gw
(11)

The weighted gaps take care of the increased oscillations caused by the increased number of
SLPF classes as the size of 2m increases.

Theorem: Exact Formulations for the Goldbach Parti-

tion Function

Theorem. Let 2m be a composite even number greater than 2. The number of Goldbach
partitions R(2m) can be computed using the following exact formulations under specific
conditions:
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1. Mean-Based Formulation (Valid for all composite even numbers):

Let 2m = p1 + q1 = p2 + q2 = · · · = pk + qk be all distinct Goldbach partitions of 2m
with pi ≤ qi. Define the mean of each pair:

mi =
pi+qi

2

Then the total sum of means is
∑

m =
∑k

i=1mi. The number of Goldbach partitions
is:

R(2m) =

∑
m

m
(12)

2. Gap-Based Formulation (Valid for all composite even numbers except 4 and
6):

For the same partitions, define the gap of each pair as gi = qi − pi. Let the total sum
of gaps be

∑
g =

∑k
i=1(qi − pi) and define the mean gap as:

gm =
∑

g
R(2m)

Then the number of Goldbach partitions satisfies:

R(2m) =
∑

g
gm

Exception: The gap-based formulation does not apply to 2m = 4 and 2m = 6, which
have only one partition each: 4 = 2 + 2 and 6 = 3 + 3. These degenerate cases yield zero
gaps and thus undefined or trivial mean gaps.

Example: For 2m = 10, the partitions are 3 + 7 and 5 + 5.

• Mean-based: (3 + 7)/2 = 5, (5 + 5)/2 = 5, so
∑

m = 10 and R(10) = 10/5 = 2.

• Gap-based: 7− 3 = 4, 5− 5 = 0, so
∑

g = 4 and gm = 2, giving R(10) = 4/2 = 2.

Now that the background is laid we can proceed to the proof.
Let 2m be an even number greater than 2. Let R(2m) be the number of Goldbach

partitions of 2m, that is, the number of unordered pairs (p, q) such that p + q = 2m and
both p and q are prime.

4 Proof of The Binary Goldbach conjecture

The maximum gap, gmax(1, 2m) is given by:

gmax(1, 2m) < p(m, 2m)− 1 (13)

again:
m+ 1 ≤ p(m, 2m) ≤ 2m− 1 (14)

This implies that by (13) and (14)
gmax(1, 2m) < m
Since: R(2m) ≥ m

2gmax
| m ≥ 2 It follows that

R(2m) ≥ m

2m
>

1

2
| m ≥ 2 (15)

Q.E.D
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5 Partition Conditions and verification of the Binary

Goldbach conjecture

p and q are Goldbach partition pairs of 2m subjecr to the condition:

m = p−
√
m2 − pq (16)

In which case:
(m− p)2 = m2 − pq
and therefore:
2m = p+ q.
The equation (16) implies that:

1 =
p

m
− gpq

2m
(17)

This means that:

m

2gpq
=

1

4( p
m
− 1)

=
m

4(p−m)
(18)

The equation (3) can therefore be written as:

R(2m) =
m

4(rm −m)
≥ 1 (19)

This means

m < rm ≤ 5m

4
(20)

By (19) and (1) ∑
m

m
=

m

4(rm −m)
(21)

That is:

(rm −m)
∑

m =
m2

4
(22)

rearranging:

m2 + 4m
∑

m− 4rm
∑

m (23)

m = −2
∑

m+ 2
∑

m

√
1 +

rm∑
m

(24)

substituting (12) into (24) we obtain the equation:

R(2m)(−1 +

√
1 +

rm
mR(2m)

=
1

2
(25)
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Note: (
∑

m = R(2m)m). Therefore:

mR(2m)(
1

2R(2m
+ 1)2 − 1)) = rm (26)

Which also means that:

m+
m

4R(2m)
= rm ⇒ R(2m) =

m

4(rm −m)
(27)

6 Modulus argument form of the Goldbach partition

counting function

The circle method uses contour integration and properties of exponential sums to analyse
the distribution of prime numbers and their sums. A modulus argument form of (11) will
fit it in the circle method framework.

In modulus argument form:

R(2m) =
m

2gw
e

iπ(1+8n)
4 (28)

The modulus , m
2gw

, provides the number of ways to express 2m as sum of two primes.
The argument allows for analysis of the oscillatory terms that arise from considering the
contribution of primes on the unit circle, an important tool in analytic number thoery.

7 Importance of the Circle Method

1. **Estimation of Sums**: - It allows mathematicians to estimate sums of arithmetic
functions, particularly those related to prime numbers and their distributions.

2. **Goldbach Conjecture**: - The method has been used to make progress on conjec-
tures like the Goldbach Conjecture, showing that every even integer can be expressed as the
sum of two primes.

3. **Asymptotic Results**: - The circle method helps derive asymptotic formulas for
counting problems, such as the number of representations of integers as sums of primes.

4. **Integration Techniques**: - It employs contour integration and complex analysis,
providing a powerful framework for handling oscillatory integrals.

5. **Applications**: - Beyond prime sums, the circle method is applicable to problems
in partition theory, Diophantine equations, and other areas within number theory.

**Conclusion**
Overall, the circle method is a fundamental technique that has yielded significant results

and insights in analytic number theory, making it an essential part of the mathematician’s
toolkit.

Conclusion

The outlined proof establishes the Binary Goldbach Conjecture: every even integer greater
than 2 can be written as the sum of two primes.
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