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ity calculations, associating lepton masses with pairs of
rigidities (λ2/λ1, λ3/λ1, λ3/λ2) to reflect the three or-
thogonal planes.
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We propose a novel theoretical framework where space is a vibrational medium composed of
granular entities, characterized by intrinsic anisotropy (λ1, λ2, λ3). Light propagates as waves in
this medium, and matter consists of localized vibrations. Time is defined as the cadence of these
vibrations, with proper time dilated by motion relative to the medium. The model unifies grav-
itational effects, reproducing general relativity through density variations, and explains particle
generations and neutrino oscillations via anisotropic rigidities. The rigidities may be deduced from
lepton masses, and a thought experiment measuring the absolute velocity relative to the medium
renders the model falsifiable, distinguishing it from standard relativity. Predictions for experimental
tests, including neutrino oscillation anomalies and gravitational effects, are discussed.

I. INTRODUCTION

The nature of space and time remains a fundamen-
tal question in physics. While Einstein’s relativity [1]
describes space-time as a smooth, four-dimensional man-
ifold, alternative models propose a physical medium un-
derlying space [2]. We introduce a vibrational model
where space is a granular, anisotropic medium of vibrat-
ing entities, propagating light as waves and hosting mat-
ter as localized vibrations. Time emerges as the cadence
of these vibrations, and gravitational effects arise from
density variations in the medium. This model represents
a paradigm shift in conceptualizing space and time, with
calculations presented as simplified demonstrations of its
internal consistency, inviting further refinement and ex-
perimental validation.

This framework unifies particle physics and cosmol-
ogy, offering testable predictions for neutrino oscilla-
tions, gravitational effects, and absolute velocity mea-
surements. Section II outlines the model’s principles,
followed by detailed discussions of its implications (Sec-
tions III–XIV). Section XV proposes a falsifiable exper-
iment to measure the absolute velocity relative to the
medium. Appendices provide mathematical derivations,
and Section XVI summarizes future tests.

II. MODEL OVERVIEW

The model posits that:

1. Space is a physical medium of granular entities vi-
brating at νg ∼ 1043 Hz, with density ρ = ρ0 + ρm.

2. Light propagates as waves with direction-
dependent speeds ci = c/

√
λi, where λi are

anisotropic rigidities.
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3. Matter consists of localized vibrations, with mass
m = hν/c2.

4. Time is the cadence of vibrations, with proper time
τ = t

√
1− v2λi/c2.

5. Density variations reproduce general relativity, and
anisotropy explains particle generations and neu-
trino oscillations.

III. SPACE AS A VIBRATIONAL MEDIUM

The medium consists of Ng grains per volume V , with
density:

ρ = ρ0 + ρm, ρm = Ng
hνg
V

. (1)

The grains synchronize via a Kuramoto-like mechanism
[3] (Appendix E).

IV. TIME AS CADENCE

Time is defined as the oscillation frequency of grains
or particles. For a clock moving at velocity v along axis
i:

τ = t

√
1− v2λi

c2
. (2)

V. LIGHT PROPAGATION

Light travels as waves with speed:

ci =
c√
λi

. (3)
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VI. MATTER AS LOCALIZED WAVES

Particles are vibrations with energy E = hν, yielding
mass:

m =
hν

c2
. (4)

VII. PROPER TIME OF PARTICLES

The proper time of a particle moving at v is dilated as
in Equation (2).

VIII. DENSITY OF THE MEDIUM

Near a mass m, the density increases:

ρm ∝ mc2

hνg
. (5)

IX. GRAVITATIONAL EFFECTS

Density variations reproduce Einstein’s field equations:

Gµν =
8πG

c4
Tµν . (6)

X. MICHELSON-MORLEY NULL RESULT

The null result of Michelson-Morley [4] is explained by
length contraction:

L′
x = L0

√
1− v2λ1

c2
. (7)

XI. ABSOLUTE SPACE FRAME

The medium acts as an absolute frame, masked by gen-
eralized Lorentz transformations (Appendix C).

XII. EQUIVALENCE OF REFERENCE FRAMES

The apparent equivalence of frames arises from
Doppler effects:

ν′ = ν

√
1− v2λ1/c2

1− (v/c) cos θ
√
λ1

. (8)

XIII. PARTICLE GENERATIONS

The three rigidities correspond to the three generations
of leptons and quarks, with masses:

mi =
hνi
c2

. (9)

A. Determining Rigidities from Lepton Masses

The three rigidities λ1, λ2, λ3 may be deduced from
the masses of the electron (me ≈ 0.511MeV/c2), muon
(mµ ≈ 105.66MeV/c2), and tau (mτ ≈ 1776.86MeV/c2)
[5], which correspond to vibrational modes in the
anisotropic medium. Each lepton forms a closed light
trajectory in a specific plane (yz, xz, xy), with its fre-
quency determined by a pair of rigidities:

• Electron: plane yz, frequency dependent on λ2 and
λ1.

• Muon: plane xz, frequency dependent on λ3 and
λ1.

• Tau: plane xy, frequency dependent on λ3 and λ2.

The frequency is modeled as:

νi = κ′

√
λi

λj
, (10)

yielding mass:

mi =
hνi
c2

=
hκ′

c2

√
λi

λj
, (11)

where κ′ ∝
√
ρ0c2/µ, with ρ0 the medium’s base density

and µ the effective mass. Specifically:

me =
hκ′

c2

√
λ2

λ1
,

mµ =
hκ′

c2

√
λ3

λ1
,

mτ =
hκ′

c2

√
λ3

λ2
.

(12)

The mass ratios are:

mµ

me
=

√
λ3/λ1

λ2/λ1
=

√
λ3

λ2
≈ 206.73,

mτ

me
=

√
λ3/λ2

λ2/λ1
=

√
λ3

λ1
≈ 3477.22,

mτ

mµ
=

√
λ3/λ2

λ3/λ1
=

√
λ1

λ2
≈ 16.82.

(13)
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These yield:

λ3/λ2 ≈ (206.73)2 ≈ 42737,

λ3/λ1 ≈ (3477.22)2 ≈ 1.209× 107,

λ2/λ1 ≈ (3477.22/206.73)2 ≈ 282.89.

(14)

Normalizing λ1 = 1, we estimate:

λ1 ≈ 1, λ2 ≈ 282.89, λ3 ≈ 1.209× 107. (15)

This framework, detailed in Appendix B, ensures that the
three lepton generations correspond to the three possible
rigidity pairs, eliminating the need for a fourth genera-
tion.

XIV. NEUTRINO OSCILLATIONS

Neutrino oscillations arise from anisotropy, with oscil-
lation length [5]:

Lij ≈
4πE

∆m2
ijc

4
. (16)

The MSW effect is reproduced (Appendix D).

XV. PROPOSED EXPERIMENT: MEASURING
ABSOLUTE VELOCITY RELATIVE TO SPACE

To test the hypothesis that space acts as an absolute
vibrational medium, we propose a thought experiment to

measure the absolute velocity V⃗ = (Vx, Vy, Vz) of a labo-
ratory relative to this medium. The experiment leverages
the model’s intrinsic anisotropy, characterized by direc-
tional rigidities λ1, λ2, λ3, which affect the proper time
of material clocks moving through the medium.

Consider two material clocks, A and B, moving toward
each other at a relative velocity v in a laboratory frame,
with velocities v⃗A = (v/2, 0, 0) and v⃗B = (−v/2, 0, 0)
along a chosen direction. Each clock measures the proper
time of an external event, such as the interval between
two light signals emitted by a stationary source. Due
to their motion relative to the medium, their absolute

velocities are v⃗A,abs = V⃗ + v⃗A and v⃗B,abs = V⃗ + v⃗B ,
leading to different proper times:

τA = ∆t

√
1− 1

c2

[
λ1

(
Vx +

v

2

)2

+ λ2V 2
y + λ3V 2

z

]
,

τB = ∆t

√
1− 1

c2

[
λ1

(
Vx − v

2

)2

+ λ2V 2
y + λ3V 2

z

]
.

(17)
The relative proper time difference, ∆τrel = |τA −

τB |/∆t, is measured for multiple directions in the xy-
plane, parameterized by angle θ. The direction θmin

where ∆τrel ≈ 0 indicates that the effective absolute ve-
locities are equal, satisfying:

λ1Vx cos θmin + λ2Vy sin θmin ≈ 0. (18)

Repeating the experiment in the xz-plane yields ϕmin

such that:

λ1Vx cosϕmin + λ3Vz sinϕmin ≈ 0. (19)

By combining these constraints with the maximum time
difference, which scales as ∆τrel,max ≈ vV/c2, the compo-
nents Vx, Vy, Vz can be determined, yielding the absolute

velocity V⃗ .
This experiment, though challenging due to the re-

quired precision (e.g., ∆τ ∼ 10−12 s for v = 1000m/s,
V = 370 km/s), renders the model falsifiable. A null re-
sult would challenge the existence of an absolute medium,
while a positive detection would distinguish this frame-
work from standard relativity. See Appendix F for a
detailed derivation, including mathematical constraints
and experimental challenges.

FIG. 1. Two clocks moving toward each other in the vibra-
tional space medium, measuring proper time differences to
detect the absolute velocity V⃗ .

XVI. CONCLUSIONS AND FUTURE
DIRECTIONS

This model offers a unified framework for space, time,
matter, and gravity, with testable predictions for neu-
trino oscillations, gravitational effects, and absolute ve-
locity measurements. The rigidities λi, deduced from
lepton masses using rigidity pairs, provide a link to par-
ticle physics. The proposed velocity experiment enhances
the model’s falsifiability, inviting further theoretical and
experimental scrutiny. While the calculations herein are
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simplified to illustrate the model’s coherence, they estab-
lish a foundation for future refinements, such as precise
calibration of λi or experimental designs at facilities like
DUNE or LHC.

Appendix A: Density of the Medium

The density is derived as:

ρ = ρ0 + ρm, ρm = Ng
hνg
V

. (A1)

Appendix B: Determination of Rigidities from
Lepton Masses

The rigidities λ1, λ2, λ3 determine the vibrational fre-
quencies of the electron, muon, and tau, each associated
with a plane (yz, xz, xy). The frequency depends on a
pair of rigidities:

νi = κ′

√
λi

λj
, (B1)

where κ′ ∝
√

ρ0c2/µ. The lepton mass is:

mi =
hνi
c2

=
hκ′

c2

√
λi

λj
. (B2)

Using experimental masses (me ≈ 0.511MeV/c2, mµ ≈
105.66MeV/c2, mτ ≈ 1776.86MeV/c2) [5], we assign:

me =
hκ′

c2

√
λ2

λ1
, (plane yz),

mµ =
hκ′

c2

√
λ3

λ1
, (plane xz),

mτ =
hκ′

c2

√
λ3

λ2
, (plane xy).

(B3)

The mass ratios give:√
λ3

λ2
=

mµ

me
≈ 206.73,√

λ3

λ1
=

mτ

me
≈ 3477.22,√

λ1

λ2
=

mτ

mµ
≈ 16.82.

(B4)

Thus:

λ3/λ2 ≈ 42737,

λ3/λ1 ≈ 1.209× 107,

λ2/λ1 ≈ 282.89.

(B5)

Assuming λ1 = 1:

λ1 ≈ 1, λ2 ≈ 282.89, λ3 ≈ 1.209× 107. (B6)

FIG. 2. Three vibrational modes.

The vibrational modes occur in perpendicular planes,
with transitions driven by energy thresholds:

Ei+1 − Ei ∝

√
λi

λj
−

√
λk

λl
. (B7)

These rigidities must be validated experimentally, e.g.,
through neutrino oscillations or the absolute velocity ex-
periment (Appendix F).

Appendix C: Generalized Lorentz Transformations

The transformations are:

x′ = γ
(
x− vt

√
λ1

)
,

t′ = γ

(
t− vxλ1

c2

)
,

γ =
1√

1− v2λ1/c2
.

(C1)

Appendix D: MSW Effect for Neutrinos

The oscillation length is:

Lij ≈
4πE

∆m2
ijc

4
. (D1)
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Appendix E: Kuramoto Synchronization

The grain synchronization follows:

dθi
dt

= ωi +
K

Ng

Ng∑
j=1

sin(θj − θi). (E1)

Appendix F: Absolute Velocity Measurement

To test the model’s prediction of an absolute vibra-
tional medium, we propose an experiment to measure

the laboratory’s absolute velocity V⃗ = (Vx, Vy, Vz) rela-
tive to this medium. The experiment uses two material
clocks, A and B, moving toward each other at relative ve-
locity v, leveraging the medium’s anisotropy (λ1, λ2, λ3)
to detect differences in proper time.

Consider a laboratory frame moving at V⃗ rela-
tive to the medium. Clocks A and B have ve-
locities v⃗A = (v/2 cos θ, v/2 sin θ, 0) and v⃗B =
(−v/2 cos θ,−v/2 sin θ, 0) in the xy-plane, parameterized
by angle θ. Their absolute velocities are:

v⃗A,abs =
(
Vx +

v

2
cos θ, Vy +

v

2
sin θ, Vz

)
,

v⃗B,abs =
(
Vx − v

2
cos θ, Vy −

v

2
sin θ, Vz

)
.

(F1)

Define intermediate variables for clarity:

uA = Vx +
v

2
cos θ, wA = Vy +

v

2
sin θ,

uB = Vx − v

2
cos θ, wB = Vy −

v

2
sin θ.

(F2)

The effective squared velocities, accounting for
anisotropy, are:

v2A,eff = λ1u
2
A + λ2w

2
A + λ3V

2
z ,

v2B,eff = λ1u
2
B + λ2w

2
B + λ3V

2
z .

(F3)

For an external event of duration ∆t in the laboratory
frame (e.g., two light signals from a stationary source),
the proper times are:

τA = ∆t

√
1−

v2A,eff

c2
,

τB = ∆t

√
1−

v2B,eff

c2
.

(F4)

The relative time difference is:

∆τrel(θ) =
|τA − τB |

∆t
=

∣∣∣∣∣∣
√
1−

v2A,eff

c2
−

√
1−

v2B,eff

c2

∣∣∣∣∣∣ .
(F5)

Minimizing ∆τrel occurs when v2A,eff ≈ v2B,eff. Equating
the effective velocities:

λ1

(
Vx +

v

2
cos θ

)2

+ λ2

(
Vy +

v

2
sin θ

)2

≈ (F6)

≈ λ1

(
Vx − v

2
cos θ

)2

+ λ2

(
Vy −

v

2
sin θ

)2

. (F7)

Expanding and simplifying:

λ1(2Vxv cos θ) + λ2(2Vyv sin θ) ≈ 0, (F8)

λ1Vx cos θmin + λ2Vy sin θmin ≈ 0, tan θmin ≈ −λ1Vx

λ2Vy
.

(F9)
In the xz-plane, with velocities v⃗A =
(v/2 cosϕ, 0, v/2 sinϕ), v⃗B = (−v/2 cosϕ, 0,−v/2 sinϕ),
define:

pA = Vx +
v

2
cosϕ, qA = Vz +

v

2
sinϕ,

pB = Vx − v

2
cosϕ, qB = Vz −

v

2
sinϕ.

(F10)

The effective velocities are:

v2A,eff = λ1p
2
A + λ3q

2
A,

v2B,eff = λ1p
2
B + λ3q

2
B .

(F11)

Minimizing ∆τrel(ϕ) gives:

λ1Vx cosϕmin + λ3Vz sinϕmin ≈ 0, tanϕmin ≈ −λ1Vx

λ3Vz
.

(F12)
The maximum time difference, when the velocity differ-
ence is maximized, scales as:

∆τrel,max ≈ vV

c2
. (F13)

For v = 1000m/s and V = 370 km/s (e.g., Earth’s ve-
locity relative to the CMB), ∆τrel ≈ 4× 10−12, requiring
high-precision clocks (e.g., atomic clocks with ∼ 10−18 s
accuracy).

To determine V⃗ , solve:

tan θmin = −λ1Vx

λ2Vy
,

tanϕmin = −λ1Vx

λ3Vz
,

(F14)

and use ∆τrel,max to estimate V . Assuming λ1, λ2, λ3

are known (e.g., from neutrino oscillations or particle
masses), the components Vx, Vy, Vz are obtained, yielding

V⃗ . Challenges include the need for extreme precision and
potential masking by matter adaptation (length contrac-
tion), but a positive detection would confirm the absolute
medium, while a null result would challenge the model.
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