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Abstract

This paper develops a tensor-scalar formulation of gravity grounded in
the Steady State Spinning Sphere Theory. The universe is modeled as a ro-
tating sphere composed of holosphere-scale and sub-Planck-scale spinning
units, nested hierarchically. Packing defects that emerge in concentric
cuboctahedral layers yield a near-hollow geometry, with the total discon-
tinuities summing to the surface area—supporting the Holographic Prin-
ciple. Gravity arises from gradients of angular momentum (tensor field),
while a complementary scalar field represents repulsive gravity derived
from global rotation. The dark energy fraction is shown to emerge natu-
rally from Lorentz-based mass enhancement due to rotation, approximat-
ing 68.17%, matching Planck data. Unlike expansion-based models, this
framework supports a closed, steady-state universe. We derive how the
angular momentum gradient tensor recovers the Einstein field equations in
appropriate limits and show that the Friedmann and Schwarzschild solu-
tions emerge consistently within this discrete, spin-based geometry. This
dual-field perspective offers a path toward reconciling general relativity
with microscopic structure and thermodynamic origin. We see gravity as
Jacobson’s approach: GR as thermodynamic equilibrium. An entropic
force such as Verlinde’s. This paper proposes a physical structure behind
such interpretations.

1 Introduction

The Einstein field equations:
relate curvature to energy and momentum. This work proposes a microscopic

foundation where spacetime is composed of spinning spheres whose defects yield
curvature and energy transfer. Gravitational behavior emerges from tensor and
scalar fields corresponding to spin gradients and relativistic repulsion, respec-
tively.
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2 Definitions and Core Concepts

• Holosphere: A large-scale, rotating spherical unit that constitutes the
macroscopic structure of the universe. Holospheres are the foundational
cells of spacetime in this theory, whose interactions and packing defects
give rise to gravitational phenomena.

• Planck Sphere: A sub-constituent of the Holosphere, corresponding to
the smallest physical scale of structure, approximately the Planck length.
Planck spheres define the granular architecture of each Holosphere.

• Packing Defects: Local geometric discontinuities that arise from imper-
fect sphere packing. These defects store information, contribute to inertia,
and are responsible for curvature in the emergent spacetime.

• Spin Gradient Tensor: A tensor field representing spatial variations in
angular momentum density across nested spinning structures. This field
models attractive gravity, analogous to the Einstein curvature tensor.

• Scalar Field ϕ: A repulsive field arising from Lorentz-enhanced kinetic
energy due to global rotation. It behaves like a cosmological constant but
is derived from rotation rather than vacuum energy.

• Lorentz Mass Enhancement: The increase in effective inertial mass
of nested layers due to rotational motion approaching relativistic speeds.
This contributes an energy density of

(
1− 1

π

)
ρrest, analogous to dark

energy.

• Holographic Defect Scaling: The principle that the total number of
defects in a spherical shell scales with surface area, consistent with holo-
graphic entropy bounds.

Symbols and Equation Terms

• r: Radial coordinate within the universe (distance from center)

• R: Outer radius of the observable or modeled universe

• v(r): Tangential velocity at radius r, typically v(r) = r
Rc

• γ(r): Lorentz factor at radius r, given by γ(r) = 1√
1−(v(r)/c)2

• ρrest: Baseline rest mass-energy density

• ρϕ: Scalar field energy density arising from kinetic enhancement

• V (ϕ): Potential energy of the scalar field

• ϕ(r): Scalar field defined radially, typically ϕ(r) = −αr
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• α: Constant related to the repulsive acceleration, defined as α = kMu

• k: Scalar field coupling constant (e.g., k = 8.1879× 10−62 kg−1s−2)

• Mu: Total mass of the universe

• T
(ϕ)
µν : Stress-energy tensor of the scalar field

• Gµν : Einstein tensor representing curvature

• Tµν : General stress-energy tensor (matter + scalar contributions)

• I(z): Surface brightness of a luminous object at redshift z

• z: Cosmological redshift
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Symbols and Equation Terms

• r: Radial coordinate within the universe (distance from center)

• R: Outer radius of the observable or modeled universe

• v(r): Tangential velocity at radius r, typically v(r) = r
Rc

• γ(r): Lorentz factor at radius r, given by γ(r) = 1√
1−(v(r)/c)2

• ρrest: Baseline rest mass-energy density

• ρϕ: Scalar field energy density arising from kinetic enhancement

• V (ϕ): Potential energy of the scalar field

• ϕ(r): Scalar field defined radially, typically ϕ(r) = −αr

• α: Constant related to the repulsive acceleration, defined as α = kMu

• k: Scalar field coupling constant (e.g., k = 8.1879× 10−62 kg−1s−2)

• Mu: Total mass of the universe

• T
(ϕ)
µν : Stress-energy tensor of the scalar field

• Gµν : Einstein tensor representing curvature

• Tµν : General stress-energy tensor (matter + scalar contributions)

• I(z): Surface brightness of a luminous object at redshift z

• z: Cosmological redshift

4 Field Definitions and Couplings

4.1 Tensor Field: Attractive Gravity

Defects in concentric spherical packing create local gradients of angular momen-
tum. These spin-density variations define a tensor field:

where Lµ is the angular momentum density and the brackets denote spatial
averaging. This reproduces geodesic motion and lensing effects.

4.2 Scalar Field: Repulsive Gravity

High mass, on the order of galaxy clusters, introduce a smooth repulsive field
encoded as: This field ensures radial energy flow without invoking expansion.
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5 Lorentz-Based Dark Energy Contribution

6 Kinetic Energy Integral and the Origin of the
π Scaling Factor

In the Steady State Spinning Sphere Theory, each concentric shell of the universe
rotates at a tangential velocity proportional to its radial coordinate. This creates
a Lorentz boost to the effective mass-energy due to kinetic motion. The kinetic
energy contribution from each shell must be integrated over the full volume of
the sphere to determine the total inertial enhancement.

We define:

• r: radial position within the sphere

• R: outer radius of the universe

• v(r) = r
Rc: local tangential velocity assuming constant angular speed

• γ(r) = 1√
1−( r

R )
2
: Lorentz factor

• ρdefect(r): density of packing defects, assumed proportional to surface
density of defects at that radius

The total kinetic energy correction can then be expressed as:

Enhancement =
1

Mrest

∫ R

0

ρdefect(r) (γ(r)− 1) 4πr2dr

Assuming a normalized system and defect density that scales in a way such
that the integration yields a convergent result, the total enhancement converges
to:

Mtotal

Mrest
= π

Thus, the excess inertial mass is:

MLorentz = (π − 1)Mrest ⇒ MLorentz

Mtotal
= 1− 1

π
≈ 0.68169

This result matches the dark energy fraction observed in cosmology and
arises naturally from the rotational structure of the universe. It does not re-
quire any assumptions of inflation or space expansion—only kinetic energy from
rotation distributed across the discrete spin lattice.

Due to global rotation, every layer of the universe experiences increased
inertial mass:

The Lorentz mass contribution yields a fractional increase of mass and energy
where

matching Planck measurements. This extra energy ensures a spherical closed
universe.
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6.1 Derivation of the Lorentz-Based Dark Energy Frac-
tion

In the Steady State Spinning Sphere Theory, the rest mass of the universe is
enhanced by a rotational kinetic energy contribution arising from relativistic
effects. For a uniformly rotating shell, the mass enhancement factor due to
Lorentz effects is proportional to π, assuming a distribution of relativistic ve-
locities across layers.

Thus, the total inertial mass becomes:

Mtotal = πMrest

The fractional contribution of kinetic (or Lorentz) mass is:

Mtotal −Mrest

Mtotal
=

π − 1

π

This yields the predicted dark energy fraction:

Dark Energy Fraction =

(
1− 1

π

)
≈ 0.68169 ≈ 68.17%

This value closely aligns with the observed ∼68.3% contribution from dark en-
ergy as reported by Planck 2018, suggesting that rotational Lorentz mass en-
hancement may replace the need for a cosmological constant in a steady-state
model.

This scalar field behaves as a smooth, isotropic energy distribution that
contributes to the large-scale acceleration observed in the universe. Unlike tra-
ditional inflationary models, this approach arises naturally from the geometric
and rotational structure of spacetime.

Scalar field representation of repulsive acceleration:

ϕ(r) = −αr where α = kMu

a⃗rep = −∇ϕ = α

Scalar energy density equivalent to Lorentz contribution:

ρϕ =

(
1− 1

π

)
ρrest

7 Scalar Field Interpretation and Comparison
to Quintessence

In contrast to the standard cosmological constant interpretation of dark energy,
we model the repulsive gravity as emerging from the Lorentz-boosted kinetic
energy accumulated through the global rotation of a finite, spinning universe.
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This kinetic enhancement scales as π times the rest mass, producing a fractional
increase of

MLorentz

Mtotal
= 1− 1

π
≈ 0.68169

which matches current observational estimates of the dark energy fraction.
This additional energy is interpreted as a scalar field ϕ(r) = −αr whose gra-

dient a⃗rep = −∇ϕ = α creates a smooth, isotropic repulsive acceleration. Such
scalar fields have been studied in cosmology under the umbrella of dynamical
dark energy models, particularly quintessence (4; 5).

In these models, a time-evolving scalar field with potential V (ϕ) contributes
both an energy density and pressure to the Friedmann equations. While tradi-
tional quintessence invokes a field rolling down a potential, the model presented
here ties the scalar field directly to the integrated rotational kinetic energy of a
non-expanding, spinning universe.

This formulation provides a physical and geometric origin for the dark energy
component—one that arises from the anisotropic distribution of motion in a
discretized spacetime lattice, rather than from vacuum energy or a cosmological
constant.

8 Holographic Nesting and Defect Scaling

The Steady State Spinning Sphere Theory models all matter and geometry as
emerging from a hierarchy of spinning spheres: holosphere-scale spheres form
the foundational medium, while each holosphere sphere itself is constructed
from smaller substructures—termed Planck spheres. Each layer of this nested
architecture contributes defects due to imperfect packing in a cuboctahedral
configuration.

A key insight of this model is that the number of packing defects within a
given spherical shell scales proportionally with its surface area. Thus, the total
defect distribution at each hierarchical level obeys a surface-area scaling law:

Total Defects ∼ 4π(n2 + n)

where n denotes the number of concentric layers. As n becomes large, this
expression asymptotically approaches the familiar form of the surface area of a
sphere.

This implies a holographic character not only at cosmological scales (as in
black hole entropy) but also recursively at sub-holosphereian levels. The impli-
cations are threefold:

• Black hole entropy corresponds to surface area because the number of
accessible ”defect states” scales with the bounding surface.

• Emergent gravity arises from the interactions and gradient flows of
angular momentum perturbations across these defects.
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• Information bounds are not abstract but derive from the actual dis-
crete, nested physical structure of spacetime.

This nested holographic defect scaling supports a universe where both macro-
scopic gravity and microscopic particle structure emerge from the same geomet-
ric basis.

9 Length Contraction and Time Dilation from
Defect Migration

9.1 Length Contraction as Defect Redistribution

In this model, a particle is represented as a sphere composed of smaller spinning
units (e.g., holosphere or Planck spheres). At low velocities, packing defects
(i.e., discontinuities) are distributed throughout the volume. As the particle’s
velocity approaches the speed of light, these defects migrate outward toward the
surface. This migration leaves the interior more perfectly packed and shifts the
structural irregularities outward.

The particle does not shrink physically; instead, the effective defect-accessible
region contracts. This mirrors the Lorentz contraction factor:

λ =
1√

1− v2/c2
where A = v/c

As v → c, the sphere becomes increasingly hollow.

9.2 Time Dilation via Internal Symmetry

Internal timekeeping is modeled as spin cycles (angular momentum transitions)
within the structure. As defects move outward, the interior becomes more
symmetric and tightly packed, reducing perturbations. Consequently, fewer
”clock cycles” occur per unit proper time.

From the perspective of an external observer, this manifests as time dilation:

∆tobs = λ ·∆trest

where λ is the same contraction factor derived from the geometry of defect
migration.

This offers a physical interpretation of Lorentz contraction and time di-
lation as consequences of defect redistribution within nested spinning sphere
structures.
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10 Emergent Recovery of General Relativity: Schwarzschild
and Friedmann Limits

10.1 Einstein Field Equations from Spin Tensor Dynamics

We begin by approximating the Einstein tensor as arising from spatial variations
in angular momentum density:

Geff
µν ∼ ⟨∂µLν − ∂νLµ⟩

Here, Lµ is the local spin or angular momentum density of the holosphere-
scale spin lattice. In the continuum limit, coarse-grained spin gradients yield
curvature, matching the interpretation of Gµν in Einstein’s equation:

Gµν =
8πG

c4
Tµν

where Tµν includes both mass-energy (defect density) and rotational flux terms.

10.2 Recovery of the Schwarzschild Metric

In the static, spherically symmetric limit, and in vacuum outside a defect-rich
region, the tensor field reduces to:

ds2 = −
(
1− 2GM

rc2

)
c2dt2 +

(
1− 2GM

rc2

)−1

dr2 + r2dΩ2

This solution emerges when spin gradients vanish (∂µLν → 0) outside a
concentrated region of packing defects. The net effect is an external geometry
that replicates the Schwarzschild curvature.

10.3 Friedmann Equation Equivalence from Scalar Field

At cosmological scales, the scalar field ϕ(r) = −kMur introduces a repulsive
effect. Let a(t) be the radial position of a test particle. The acceleration from
ϕ is:

ä = − d

dr
ϕ = kMu = α

Integrating the scalar field contribution over a uniform matter distribution
yields an effective Friedmann-like equation:(

ȧ

a

)2

=
8πG

3
ρrest +

α

a

Here, α emerges as a scalar curvature term from kinetic enhancement due to
rotation. Note that this does not require expansion — a(t) reflects the dynamic
motion of particles in a rotating but closed geometry, not the stretching of space.
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10.4 Interpretation

The Friedmann-like term α/a functions analogously to a cosmological constant
or dark energy term, but arises from the internal dynamics of the spin lat-
tice. The scalar field ϕ(r) is not an abstract potential, but the result of real
mass enhancement due to Lorentz velocity layering. In this sense, the repulsive
acceleration is embedded in the geometry.

Meanwhile, the Schwarzschild recovery demonstrates that localized mass
concentrations still produce the familiar near-field curvature—thereby confirm-
ing compatibility with known tests of general relativity.

11 Scalar Field from Lorentz Kinetic Energy

To connect the rotational kinetic enhancement of mass-energy with the formal-
ism of general relativity, we model the associated repulsive effect as arising from
a scalar field ϕ with an appropriate Lagrangian density L(ϕ).

11.1 Scalar Field Lagrangian

We consider a minimally coupled scalar field with the standard form:

Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ)

where ϕ is the scalar field, and V (ϕ) is the potential energy associated with the
field.

11.2 Stress-Energy Tensor for Scalar Field

The energy-momentum tensor derived from this Lagrangian is:

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
For a static, spherically symmetric field of the form ϕ(r) = −αr, we compute:

∂µϕ = −α δrµ ⇒ ∂µϕ∂νϕ = α2 δrµ δ
r
ν

and
gαβ∂αϕ∂βϕ = α2grr

Thus, the scalar energy density becomes:

T
(ϕ)
00 =

1

2
α2grr + V (ϕ)
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11.3 Relating to Lorentz-Enhanced Energy

We postulate that the scalar energy density must match the fractional enhance-
ment of rest mass due to Lorentz effects from global rotation:

ρϕ =

(
1− 1

π

)
ρrest

This allows us to back-calculate the effective scalar field parameters α and
V (ϕ) consistent with your geometric interpretation:

α = kMu, with ϕ(r) = −αr

11.4 Effective Dynamics

Inserting this scalar field stress-energy tensor into the Einstein equations:

Gµν =
8πG

c4
(Tmatter

µν + T (ϕ)
µν )

yields curvature effects due to both mass-energy and rotational kinetic energy
interpreted as scalar repulsion.

This construction completes the connection between spin-enhanced inertia
and a formally defined repulsive gravitational field consistent with relativistic
dynamics.

12 Scalar Field from Lorentz Kinetic Energy

This section formalizes the emergence of a repulsive scalar field from Lorentz-
enhanced kinetic energy in the Steady State Spinning Sphere model. As con-
centric shells of holosphere-scale spinning spheres rotate at increasing tangential
velocities, the effective inertial energy grows—interpreted here as a real scalar
energy field.

12.1 Scalar Field Lagrangian

We begin with a canonical Lagrangian for a minimally coupled scalar field ϕ(r)
in spherical symmetry:

Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ)

Assuming ϕ is purely radial and static, ϕ = ϕ(r), only the radial derivative
survives:

∂µϕ =

(
0,

dϕ

dr
, 0, 0

)
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12.2 Stress-Energy Tensor for the Scalar Field

The energy-momentum tensor of the field is:

Tϕ
µν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
In particular, the energy density and radial pressure become:

ρϕ = T 0
0 =

1

2

(
dϕ

dr

)2

+ V (ϕ)

pϕ = −T r
r =

1

2

(
dϕ

dr

)2

− V (ϕ)

12.3 Field Configuration from Rotational Dynamics

We define the scalar field linearly with radius:

ϕ(r) = −αr with α = kMu

⇒ dϕ

dr
= −α ⇒

(
dϕ

dr

)2

= α2

This constant gradient yields a repulsive acceleration:

a⃗rep = −∇ϕ = α

12.4 Connection to Dark Energy

We interpret the rotational Lorentz mass enhancement as an effective scalar
energy density:

ρϕ(r) =

(
1− 1

π

)
ρrest(r)

Solving for the potential V (ϕ):

V (ϕ) = ρϕ(r)−
1

2
α2 =

(
1− 1

π

)
ρrest(r)−

1

2
α2

This formulation gives a physical scalar field whose gradient drives repulsion,
matching the observed dark energy fraction:

MLorentz

Mtotal
= 1− 1

π
≈ 0.68169

12.5 Conclusion

The scalar field ϕ(r) models the large-scale repulsion observed cosmologically
not as a cosmological constant, but as a geometric effect arising from global
rotation. This scalar field is sourced by the kinetic enhancement of nested spin-
ning layers and maps onto general relativistic repulsion via a minimal coupling
framework.
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13 Scalar Field from Lorentz Kinetic Energy

We now formalize the connection between Lorentz-boosted inertial mass and
a scalar field that contributes repulsive gravity within the Steady State Spin-
ning Sphere framework. The global rotation of the universe induces relativistic
kinetic energy increases at each concentric shell, resulting in an effective en-
hancement of total mass.

13.1 Scalar Field Definition and Lagrangian

Let the scalar field ϕ be defined as a linear function of radius:

ϕ(r) = −αr, where α = kMu

with k = 8.1879× 10−62 kg−1 s−2 and Mu = 1.6360× 1054 kg the total mass
of the universe.

We adopt the standard Lagrangian density for a minimally coupled scalar
field:

Lϕ = −1

2
gµν∂µϕ∂νϕ− V (ϕ)

For a linearly varying field, we consider the simplest potential:

V (ϕ) = 0

13.2 Stress-Energy Tensor for the Scalar Field

The stress-energy tensor derived from Lϕ is:

Tϕ
µν = ∂µϕ∂νϕ− 1

2
gµν g

λσ∂λϕ∂σϕ

In a static, spherically symmetric configuration, the only nonzero derivative
is in the radial direction:

∂rϕ = −α

Thus, we compute:

gλσ∂λϕ∂σϕ = grr(∂rϕ)
2 = α2grr

Substituting, we obtain:

Tϕ
µν = α2δrµδ

r
ν − 1

2
gµνα

2grr

This tensor contributes an effective energy density and negative pressure,
sourcing a repulsive gravitational effect.
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13.3 Energy Density Interpretation

The total inertial energy, including Lorentz effects, is:

Mtotal = Mrest +MLorentz

Summing contributions across all layers of the rotating universe, the inertial
enhancement factor converges to:

MLorentz

Mtotal
= 1− 1

π
≈ 0.68169

Thus, the scalar field energy density is identified as:

ρϕ =

(
1− 1

π

)
ρrest

13.4 Field Contribution to General Relativity

The Einstein equations are modified to include the scalar field:

Gµν =
8πG

c4
(
Tmatter
µν + Tϕ

µν

)
This formulation allows the Lorentz-induced kinetic energy of a rotating,

non-expanding universe to manifest as a scalar field, contributing to cosmic
acceleration without invoking a cosmological constant or inflationary expansion.

Scalar Field as a Cosmological Constant from Ro-
tational Kinetics

We propose that the scalar field ϕ arises from rotationally enhanced Lorentz
kinetic energy within a structured, spinning universe. Rather than introducing
a cosmological constant Λ ad hoc, we treat the field’s potential energy as a
derived, constant background energy density:

L = −1

2
∂µϕ∂µϕ− V (ϕ)

Assuming the field is spatially uniform, i.e., ∂µϕ ≈ 0, the Lagrangian reduces
to a constant potential term:

V (ϕ) = ρϕ =

(
1− 1

π

)
ρrest ≈ 0.68169 ρrest

This potential behaves identically to a cosmological constant in Einstein’s
equations. The energy-momentum tensor associated with the scalar field is:

T (ϕ)
µν = ∂µϕ∂νϕ− gµν

(
1

2
∂αϕ∂αϕ+ V (ϕ)

)
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Again, with ∂µϕ ≈ 0, this simplifies to:

T (ϕ)
µν = −gµνV (ϕ)

which matches the form of a cosmological constant contribution:

T (Λ)
µν = −gµνρΛ

yielding an equation of state:

w =
p

ρ
= −1

Interpretation

In this framework, the scalar field ϕ does not require a quantum origin. Instead,
it is a manifestation of global kinetic enhancement from rotational motion em-
bedded in the spacetime fabric. The near-uniform energy density of ϕ acts as
an effective vacuum energy, geometrically sourced by inertia and spin. This
explains cosmic acceleration without invoking vacuum fluctuations, providing a
natural origin for the dark energy component.

14 Tolman Surface Brightness Test in a Non-
Expanding Rotating Universe

In standard cosmology, the Tolman surface brightness test predicts that the
surface brightness of an object decreases with redshift according to:

I(z) ∝ 1

(1 + z)4

This quartic dimming arises from four effects: one factor of (1+ z) from photon
redshifting (energy loss), one from time dilation (photon arrival rate), and two
from the apparent increase in surface area due to metric expansion.

However, in the Steady State Spinning Sphere Theory (SSSST), the universe
does not undergo metric expansion. Light travels outward in a spiraling path
through a rotating, layered lattice of Holospheres. This changes the way surface
brightness scales with redshift.

Modified Dimming Law

In this framework:

• Photon energy loss still occurs via redshift ⇒ 1 factor of (1 + z)−1

• Photon arrival rate may still slow (depending on radial clock effects)
⇒ 1 factor of (1 + z)−1
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• No metric expansion, but geometric projection still leads to an increase
in apparent area ⇒ 1 factor of (1 + z)−1

Thus, the surface brightness would dim as:

I(z) ∝ 1

(1 + z)3

This intermediate scaling offers a potential resolution to observed discrepancies
in surface brightness data. Notably, some observational studies (e.g., Lubin and
Sandage) find trends less steep than the (1 + z)4 prediction of ΛCDM.

Implications for Density Profile

If the universe has a radial density gradient—e.g., decreasing mass density with
distance from the rotational center—then this could further modulate bright-
ness. A specific density function ρ(r) ∝ r−n would introduce an additional
dimming or enhancement factor in the integrated flux. This remains a testable
prediction.

Testable Differences

If future surface brightness measurements at high redshift (z > 4) show consis-
tency with (1 + z)−3 rather than (1 + z)−4, this would support the geometric
predictions of the SSSST framework and call into question the assumption of
universal expansion.

Further work is warranted to derive the exact density profile of the rotating
sphere and its effects on flux propagation.

15 Conclusion

The Steady State Spinning Sphere Theory (SSSST) offers a unified framework
in which gravity, dark energy, and cosmic structure emerge naturally from a dis-
crete, hierarchical lattice of rotating Holospheres. By interpreting gravitational
attraction as a tensor field arising from spin gradients, and cosmic acceleration
as a scalar field sourced by Lorentz-enhanced kinetic energy, the theory connects
macroscopic curvature to microscopic structure.

A key result is the derivation of the dark energy fraction as a geometric
and dynamical consequence of nested rotational motion, yielding a value of 1−
1
π ≈ 0.68169, which closely matches observational constraints. Furthermore, the
theory reproduces general relativistic solutions such as the Schwarzschild and
Friedmann metrics in appropriate limits, without requiring spacetime expansion
or inflation.

Importantly, the model predicts a modified Tolman surface brightness rela-
tion of I(z) ∝ (1+ z)−3, reflecting the absence of metric expansion and offering
a potential match to observed deviations from the standard (1+ z)−4 law. This
provides a critical avenue for observational testing.
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Together, the tensor-scalar dynamics embedded in a rotating, defect-driven
spacetime point toward a thermodynamic origin of gravity, consistent with Ja-
cobson’s and Verlinde’s interpretations. The discrete geometry of holospheres
not only supports the Holographic Principle but provides a physical substrate
for emergent gravitation, time dilation, and cosmic acceleration—framing gen-
eral relativity as a macroscopic limit of deeper, spin-based laws.

Future work should focus on quantifying the density gradient, comparing
angular size-redshift predictions, and identifying observable signatures in large-
scale cosmic alignments and supernova time dilation profiles.

References

[1] M. J. Sarnowski, ”Predicting the Gravitational Constant from the New
Physics of a Rotating Universe,” viXra:1903.0253v3.

[2] C. Brans and R. H. Dicke, ”Mach’s Principle and a Relativistic Theory of
Gravitation,” Physical Review, 124(3):925–935, 1961.

[3] S. Weinberg, Gravitation and Cosmology, Wiley, 1972.

[4] R. R. Caldwell, R. Dave, and P. J. Steinhardt, Cosmological imprint of an
energy component with general equation of state, Phys. Rev. Lett. 80, 1582
(1998).

[5] E. J. Copeland, M. Sami, and S. Tsujikawa, Dynamics of dark energy, Int.
J. Mod. Phys. D 15, 1753–1936 (2006), https://arxiv.org/abs/hep-th/
0603057.

[6] S. M. Carroll, Spacetime and Geometry: An Introduction to General Rela-
tivity, Addison-Wesley, 2004.

[7] T. Jacobson, Thermodynamics of Spacetime: The Einstein Equation of
State, Phys. Rev. Lett. 75, 1260 (1995).

[8] E. Verlinde, On the Origin of Gravity and the Laws of Newton, JHEP
1104:029.

[9] G. ’t Hooft, Dimensional Reduction in Quantum Gravity, arXiv:gr-
qc/9310026.

[10] L. Susskind, The World as a Hologram, J. Math. Phys. 36, 6377 (1995).

17

https://arxiv.org/abs/hep-th/0603057
https://arxiv.org/abs/hep-th/0603057

	Introduction
	Definitions and Core Concepts
	Definitions and Core Concepts
	Field Definitions and Couplings
	Tensor Field: Attractive Gravity
	Scalar Field: Repulsive Gravity

	Lorentz-Based Dark Energy Contribution
	Kinetic Energy Integral and the Origin of the  Scaling Factor
	Derivation of the Lorentz-Based Dark Energy Fraction

	Scalar Field Interpretation and Comparison to Quintessence
	Holographic Nesting and Defect Scaling
	Length Contraction and Time Dilation from Defect Migration
	Length Contraction as Defect Redistribution
	Time Dilation via Internal Symmetry

	Emergent Recovery of General Relativity: Schwarzschild and Friedmann Limits
	Einstein Field Equations from Spin Tensor Dynamics
	Recovery of the Schwarzschild Metric
	Friedmann Equation Equivalence from Scalar Field
	Interpretation

	Scalar Field from Lorentz Kinetic Energy
	Scalar Field Lagrangian
	Stress-Energy Tensor for Scalar Field
	Relating to Lorentz-Enhanced Energy
	Effective Dynamics

	Scalar Field from Lorentz Kinetic Energy
	Scalar Field Lagrangian
	Stress-Energy Tensor for the Scalar Field
	Field Configuration from Rotational Dynamics
	Connection to Dark Energy
	Conclusion

	Scalar Field from Lorentz Kinetic Energy
	Scalar Field Definition and Lagrangian
	Stress-Energy Tensor for the Scalar Field
	Energy Density Interpretation
	Field Contribution to General Relativity

	Tolman Surface Brightness Test in a Non-Expanding Rotating Universe
	Conclusion

