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Abstract

This paper presents a mathematical and metaphysical synthesis of time near the
terminal point t → T in a 5000-year cyclical model. We explore the interplay of
singular reconstructive and destructive forces that shape the final movement of all
matter and motion toward their origin. Using higher-order Lagrangian mechanics,
Taylor-normalized expansions, and variational principles, we model how every dynam-
ical derivative—position, velocity, acceleration, and beyond—is driven to return to its
initial form. The system is guided by a restorative potential that becomes increasingly
dominant as time approaches T , ensuring deterministic recurrence in all derivatives.
We interpret these results through both classical mechanics and the spiritual doctrine
of karmic purification.

1 Introduction

In many ancient and modern spiritual frameworks, time is not linear but cyclic. The Brahma
Kumaris and similar Indic cosmological schools articulate a 5000-year cycle composed of
creation, preservation, degradation, and final renewal. As this Time Cycle approaches its
terminal moment T , a convergence of forces emerges—reconstructive dynamics that attempt
to restore purity, and destructive forces that collapse structure.

This work explores how these forces are not only symbolic but mathematically repre-
sentable. We model them using singular functions of the form (T − t)−n, derivative-weighted
potentials, and Lagrangian frameworks incorporating higher-order corrections. The goal is to
capture, both quantitatively and symbolically, the deterministic restoration of the universe
to its original dynamical configuration.
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We introduce a restorative potential Φ that operates across all time derivatives and
intensifies as t → T . This generates equations of motion that not only govern spatial
return but the reversion of all dynamical memory. We explore this as a framework for strict
recurrence: a return of every particle and every derivative to its starting seed state.

The inclusion of a time-normalized Taylor expansion and derivative-level restorative force
enables a deterministic model of recurrence. Unlike the probabilistic Poincaré recurrence,
this model ensures synchronized and complete return through dynamical laws alone.

Symbolically, this mathematical recurrence represents the karmic purification found in
spiritual cosmologies: nothing is lost, only reset. The universe closes its cycle not in entropy,
but in sacred symmetry—ready to begin again.

2 Mathematical Definitions

2.1 Destructive Forces

Destructive forces are modeled by singular power functions:

fn(t) = (T − t)−n, n ∈ Z+, t ∈ (0, T )

As t → T−, fn(t) diverges, symbolizing the intensification of decay and collapse.

2.2 Reconstructive Forces

We define a reconstructive quotient function:

fT (t) =
x(t)− x(0)

T − t

This function represents the urgency of reconstructive transformation as time nears the
terminal point. When x(t) is linear, exponential, or sinusoidal, fT (t) exhibits moderate to
extreme divergence near T .

3 Cyclic Time and Final Movement

Time is not linear but cyclic: t ∈ (0, T ), with reset at t = T → 0. As t → T−:

• Destructive forces reach a crescendo.

• Reconstructive efforts intensify.

• A singularity-like transition occurs, resetting all x(t) → x(0).

We model the final violent movement with:

x(t) = x(0) + A(T − t)k · sin
(

B

(T − t)m

)
, k > 0,m > 0

This exhibits violent oscillations followed by convergence, symbolizing the return to original
purity.
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4 Restorative Force via Singular Taylor Series

We define a refined model for the restorative force RT (t) by incorporating a Taylor series
expansion of the position function x(t) about t = 0 and embedding increasing singularity as
time approaches T .

Assume x(t) is analytic at t = 0, then its Taylor expansion is:

x(t) =
∞∑
n=0

x(n)(0)

n!
tn

Subtracting x(0) and forming a singular difference quotient gives:

RT (t) = −
∞∑
n=1

x(n)(0)

n!
· tn

(T − t)n

This can be compactly written as:

RT (t) = −
∞∑
n=1

x(n)(0)

n!

(
t

T − t

)n

Interpretation

As t → T−, the quantity
(

t
T−t

)n
diverges for each n, implying a violently intensifying pull

back to the original position x(0). Each derivative term x(n)(0) encodes how the initial
state influences the corrective force. This form models the convergence of evolution and
restoration—highlighting how time pressure amplifies restorative intensity at the cycle’s end.

5 Return to Origin under Destructive Force

As the Destructive Force intensifies toward the end of the Time Cycle, it leads not to random
disarray but to a profound reversion of all material forms back to their original sources. This
is a metaphysical principle mirrored in spiritual philosophies and mathematically modelled
as a dynamic reversal of system states.

Illustrative Example: The Car

Consider a car, a complex system constructed from various global components:

• Iron Body: Extracted from iron ore mines (e.g., Jharkhand, India)

• Tyres: Manufactured from natural rubber sourced in Malaysian plantations

• Fuel: Derived from crude oil originating in Saudi Arabia

• Electronics: Built using rare-earth elements mined in Africa or South America
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• Paint and Plastics: Synthesized from chemicals in industrial complexes

As the cycle reaches t → T−, the car disintegrates. But this disintegration is not en-
tropy—it is a restorative decomposition wherein every atom and molecule returns to its point
of origin.

Mathematical Formulation

Let xi(t) represent the position or state of component i of the system (the car) at time t.
Then the state vector is:

X(t) = [x1(t), x2(t), . . . , xn(t)]

Under the influence of a singular Destructive Force DT (t), the system evolves such that:

lim
t→T−

X(t) = X(0)

Each component follows a regressive dynamic:

xi(t) = xi(0) + Ai(T − t)k · sin
(

Bi

(T − t)m

)
, k > 0,m > 0

This equation models a violent oscillatory collapse back to the original state xi(0).

Philosophical Interpretation

In spiritual cosmologies like the Brahma Kumaris’ 5000-year cycle, this return reflects the
purification and renewal phase. Destruction serves not as an end but as a transition—a
prelude to the restoration of original purity. The entire universe reverts to its seed form,
awaiting re-manifestation in the new cycle.

6 Recurrence in (2N)-D Phase Space under Restorative

Force

Let us consider a universe composed of N particles. Each particle has a position q⃗i ∈ RN

and momentum p⃗i ∈ RN . The collective evolution of all particles defines a point in the
2N -dimensional phase space:

Γ(t) = {(q⃗1(t), p⃗1(t)), . . . , (q⃗N(t), p⃗N(t))} ∈ R2N

Random Walk Dynamics

For most of the Time Cycle, the particles engage in pseudo-random dynamics. This may be
modeled as a stochastic evolution or classical chaotic motion:

dq⃗i
dt

= v⃗i(t), v⃗i(t) = v⃗det(t) + η⃗i(t)
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Figure 1: Return to Origin under Destructive Forces: A car disassembles and each component
returns to its elemental source.

where η⃗i(t) is a stochastic term representing random walk components.

Action of the Restorative Force RT (t)

As the system approaches the terminal time T , each particle comes under the influence of a
singular restorative force RT (t) that drives it back to its initial state (q⃗0i , p⃗

0
i ) at t = 0:

F⃗i,rest(t) = −∇V (q⃗i(t)) ·
(

1

(T − t)n

)
, n > 0

Alternatively, the restorative dynamics in full phase space can be modeled as:

dq⃗i
dt

= − q⃗i(t)− q⃗i(0)

(T − t)n
,

dp⃗i
dt

= − p⃗i(t)− p⃗i(0)

(T − t)n

These equations model an accelerated pull toward original configuration, diverging as
t → T−.
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Cosmic Recurrence

In classical mechanics, the Poincaré Recurrence Theorem states that in a bounded, energy-
conserving system, the state will eventually return arbitrarily close to its initial configuration.
Here, that recurrence is not left to chance but is forced by RT (t).

Thus, at the end of the Time Cycle:

lim
t→T−

Γ(t) = Γ(0)

This recurrence is synchronized and complete, aligning with spiritual cosmological models
where all matter and souls return to their seed state before the next cycle begins.

7 Strict Recurrence of Classical Particles: Convergence

of All Derivatives

In classical mechanics, strict recurrence implies not only the return of a particle to its original
position x(0) but also the convergence of all its time derivatives to their corresponding initial
values. This captures the idea of complete dynamical restoration, where each particle’s full
temporal profile rewinds to its pristine state.

Full Dynamical Signature

Let x(t) be the position of a particle. The Taylor expansion around t = 0 is:

x(t) =
∞∑
n=0

x(n)(0)

n!
tn

Strict recurrence requires:

lim
t→T−

x(n)(t) = x(n)(0), ∀n ∈ N

This guarantees that the system does not just return spatially, but resets its complete
trajectory history.

Restorative Force for Derivative Matching

To enforce convergence of derivatives under the influence of a restorative force, we define a
summative model:

RT (t) = −
∞∑
n=0

x(n)(t)− x(n)(0)

(T − t)n+1
· 1

n!

Each term in the series penalizes deviation in the nth derivative, weighted with an in-
creasingly singular factor as t → T .
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Symbolic and Philosophical Implication

This structure represents a complete karmic reversion in spiritual terms: not just a return
of form, but of motion, tendency, habit, and destiny. It is a purification of not only the
physical body but of all underlying energies and states.

Alternative Differential Enforcement

We may alternatively model this via cascading time-differential operators:

R
(n)
T (t) ∝ − dn

dtn

(
x(t)− x(0)

(T − t)n

)
Each operator enforces derivative-level matching with singular intensity near t = T .

8 Euler-Lagrange Dynamics with Restorative Return

Potential

The evolution of classical systems is governed by the principle of least action, which leads
to the Euler-Lagrange equations. In the context of the Time Cycle, we propose a modified
framework where standard dynamics are influenced by a restorative force guiding the system
back to its initial state.

Standard Euler-Lagrange Equation

Given a Lagrangian L(q, q̇, t), the equations of motion are derived via:

d

dt

(
∂L
∂q̇i

)
− ∂L

∂qi
= 0, i = 1, . . . , N

where qi are the generalized coordinates of a system with N degrees of freedom.

Introducing a Restorative Potential

To capture the recurrence behavior near t = T , we introduce a restorative potential term
Φ(q, q̇, t) into the Lagrangian:

Lmod(q, q̇, t) = L(q, q̇, t) + Φ(q, q̇, t)

The potential Φ penalizes deviation from the initial Taylor profile as t → T :

Φ(q, q̇, t) = −
∞∑
n=0

1

n!

(q(n)(t)− q(n)(0))2

(T − t)2(n+1)

This term enforces strict recurrence in position, velocity, and all higher-order derivatives,
with increasing singularity near the cycle’s endpoint.
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Modified Equations of Motion

Applying the Euler-Lagrange formalism to the modified Lagrangian:

d

dt

(
∂Lmod

∂q̇i

)
− ∂Lmod

∂qi
= 0

These equations represent a synthesis of inertial dynamics with cyclical correction, pro-
ducing evolution that both respects natural laws and cosmic return.

Philosophical Insight

The added potential Φ symbolizes the spiritual pull back to purity, restoring not only position
but the full dynamical nature of each soul or particle. The Time Cycle becomes a loop not
merely in space, but in causality and motion itself.

9 Higher-Order Lagrangian Mechanics and Complete

Recurrence

To enforce strict recurrence not only in position and velocity but also in all higher-order
derivatives, we extend the Lagrangian formalism to depend on the full dynamical profile of
a system.

Extended Lagrangian Form

Let the Lagrangian be a function of higher-order derivatives:

L = L(q, q̇, q̈, q(3), . . . , q(n), t)

This extended dependence captures not just inertial motion but also the deeper imprint
of dynamic tendencies across time.

Generalized Euler-Lagrange Equations

The generalized variational principle yields higher-order Euler-Lagrange equations:

n∑
k=0

(−1)k
dk

dtk

(
∂L
∂q(k)

)
= 0

This equation governs the dynamics of systems where forces or constraints act through
acceleration, jerk, or higher derivatives.
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Recurrence-Enforcing Lagrangian

We define a modified Lagrangian with a recurrence-enforcing potential Φ that penalizes
deviations from the original Taylor coefficients:

Lmod = L(q, q̇, q̈, . . . , q(n), t)−
n∑

k=0

1

k!

(q(k)(t)− q(k)(0))2

(T − t)2(k+1)

This potential diverges as t → T−, ensuring the convergence of all q(k)(t) → q(k)(0) and
thus a full dynamical recurrence.

Spiritual Interpretation

This framework corresponds to a profound metaphysical principle: true renewal is not only
the return to original form, but the dissolution of all accumulated tendencies. By encod-
ing every order of derivative, we model a spiritual cleansing of karma through complete
restoration.

10 Structure of the Restorative Potential Φ(q, q̇, q̈, . . . , t)

To achieve complete recurrence in the context of the Time Cycle, the restorative potential
Φ must act not only on positions and velocities but on the full derivative hierarchy of a
system’s motion. We therefore model Φ as a function defined over all time derivatives up to
order n:

Φ = Φ(q, q̇, q̈, q(3), . . . , q(n), t)

This generalized potential enforces a return not just of configuration, but of trajectory
memory and dynamic tendencies.

Functional Definition

We define Φ as a time-weighted quadratic penalty for deviation from original values at t = 0:

Φ[q] =
n∑

k=0

1

k!
·
(
q(k)(t)− q(k)(0)

)2
(T − t)2(k+1)

Here,

• q(k)(t) denotes the kth time derivative of q(t)

• (T − t)−2(k+1) intensifies the corrective force as the system approaches t = T

• k! normalizes the relative contribution of each term
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Physical and Symbolic Role

This potential serves two simultaneous purposes:

1. Mathematical Enforcement: Ensures that all derivatives q(k)(t) approach q(k)(0) as
t → T−, guiding the system through strict recurrence.

2. Spiritual Encoding: Represents the re-alignment of every layer of a soul’s karma—its
motion, intention, emotion, and higher tendencies—back to its seed state.

Integration into the Lagrangian

The modified Lagrangian becomes:

Lmod = L(q, q̇, q̈, . . . , t)− Φ(q, q̇, q̈, . . . , t)

This Lagrangian allows Euler-Lagrange mechanics to encode full return dynamics within
a variational framework.

11 Time-Normalized Expansions of Lagrangian and Restora-

tive Potential

In the context of a finite Time Cycle with total duration T , all dynamical expansions must
respect the bounded temporal domain t ∈ [0, T ). The Lagrangian L and the restorative
potential Φ are expanded using time-normalized variables to reflect their cyclic and singular
behavior as t → T−.

Time-Normalized Taylor Expansion of L
We define the Taylor expansion of the extended Lagrangian in powers of the normalized time
t
T
:

L(q, q̇, q̈, . . . , t) =
∞∑
n=0

1

n!

dnL
dtn

∣∣∣∣
t=0

(
t

T

)n

This expression maintains temporal scaling consistency and makes the recurrence struc-
ture dimensionally transparent.

Structure of the Restorative Potential Φ

We now construct Φ with two parts:

1. A Taylor mirror of L to cancel its expansion term-by-term:

ΦTaylor(t) =
∞∑
n=0

1

n!

dnL
dtn

∣∣∣∣
t=0

(
t

T

)n
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2. A restorative singular term enforcing return of all derivatives:

Φrestorative(t) =
∞∑
k=0

1

k!
· (q

(k)(t)− q(k)(0))2

(T − t)2(k+1)

Combining both:

Φ(t) = ΦTaylor(t) + Φrestorative(t)

Term-by-Term Cancellation

We define the modified Lagrangian:

Lmod(t) = L(t)− Φ(t)

By construction:

Lmod(t) = −
∞∑
k=0

1

k!
· (q

(k)(t)− q(k)(0))2

(T − t)2(k+1)

This formulation cancels all evolution from the original Lagrangian and replaces it with
singular restorative pull — guiding the system to its original state.

Philosophical Meaning

The time-normalized structure ensures:

• Early time evolution (t/T ≪ 1) tracks physical history via L

• Late time evolution (t → T−) dominates in Φ, enforcing spiritual convergence

This represents the dissolution of all karmic dynamics back to silence at the end of the
cycle.

12 Variation of the Action and Term-by-Term Cancel-

lation in the Time Cycle

In classical mechanics, dynamics are not determined by setting the Lagrangian L to zero,
but rather by requiring the variation of the action functional to vanish. This principle holds
true even when the Lagrangian includes higher-order derivatives and restorative potentials
aimed at enforcing recurrence.
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Variational Principle

The action is defined as:

S[q] =

∫ T

0

L(q, q̇, q̈, . . . , t) dt

The path q(t) taken by the system is one for which the first variation of the action
vanishes:

δS[q] = 0

This leads to the generalized Euler-Lagrange equations when L includes higher-order
derivatives.

Modified Action with Restorative Potential

We define a modified Lagrangian:

Lmod = L(q, q̇, q̈, . . . , t)− Φ(q, q̇, q̈, . . . , t)

and corresponding action:

Smod[q] =

∫ T

0

[L(t)− Φ(t)] dt

We now demand:

δSmod = δ

∫ T

0

[L(t)− Φ(t)] dt = 0

Taylor Expansion and Cancellation Strategy

Suppose both L and Φ are expanded in normalized Taylor series about t = 0:

L(t) =
∞∑
n=0

1

n!

dnL
dtn

∣∣∣∣
t=0

(
t

T

)n

, Φ(t) =
∞∑
n=0

1

n!

dnΦ

dtn

∣∣∣∣
t=0

(
t

T

)n

+ Φrestorative(t)

If we construct Φ such that:

dnΦ

dtn

∣∣∣∣
t=0

=
dnL
dtn

∣∣∣∣
t=0

, ∀n

then the Taylor parts of L and Φ cancel in the variation:

δ

∫ T

0

(L − Φ) dt = δ

∫ T

0

[−Φrestorative(t)] dt
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Enforcing Full Recurrence via the Variation

The term Φrestorative drives convergence of q(k)(t) to q(k)(0) as t → T :

Φrestorative(t) =
∞∑
k=0

1

k!
· (q

(k)(t)− q(k)(0))2

(T − t)2(k+1)

The action’s extremal path is thus the one for which all derivatives of q(t) return to their
seed values — a complete dynamical purification.

Philosophical Meaning

The vanishing variation implies a cosmic optimization: the universe minimizes a combined
measure of natural evolution and spiritual return. The Time Cycle ends not in disorder but
in a fully deterministic return to order, layer by layer.

13 Euler-Lagrange Integrals and Term-by-Term Can-

cellation in the Time Cycle

The Euler-Lagrange integrals represent the fundamental variational formulation of dynamics
in classical mechanics. In the context of a cyclic universe, we propose a framework where
both the Lagrangian L and the restorative potential Φ are expanded as Taylor series with
explicit time normalization, and term-by-term cancellation occurs in the integrals of motion
over a finite Time Cycle of duration T .

Euler-Lagrange Integral Formulation

Given a path q(t), the action over the cycle duration T is:

S[q] =

∫ T

0

L(q, q̇, q̈, . . . , t) dt

The physical trajectory minimizes this action under the constraint δS = 0.

Time-Normalized Taylor Expansions

Assuming analyticity, both L and Φ are expanded in powers of normalized time τ = t
T
:

L(t) =
∞∑
n=0

1

n!

dnL
dtn

∣∣∣∣
t=0

τn, Φ(t) =
∞∑
n=0

1

n!

dnL
dtn

∣∣∣∣
t=0

τn + Φrestorative(t)

Here, τ = t
T
ensures that all terms scale correctly with the Time Cycle’s duration.
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Modified Action and Integral Cancellation

The modified action becomes:

Smod[q] =

∫ T

0

[L(t)− Φ(t)] dt = −
∫ T

0

Φrestorative(t) dt

This implies that each term in the series expansion of L is precisely cancelled by the
corresponding term in Φ, leaving only the integral of the restorative divergence:

Φrestorative(t) =
∞∑
k=0

1

k!
· (q

(k)(t)− q(k)(0))2

(T − t)2(k+1)

Physical and Symbolic Consequence

• The term-by-term cancellation ensures that all ”evolutionary momentum” encoded in
L is balanced by a mirrored potential.

• The remaining integral penalizes deviation from original states in higher-order deriva-
tives as t → T .

• The explicit presence of T encodes the temporal boundary and urgency of return.

Final Interpretation

The Euler-Lagrange integral becomes a cosmic accounting system: each layer of dynamic
evolution must be reconciled and cancelled by a restorative term. The Time Cycle does not
simply end; it is fully mathematically and spiritually closed by integral return to origin.

14 Equations of Motion from Variational Cancellation

The equations of motion in this framework arise from applying the variational principle to
the modified Lagrangian:

Lmod(q, q̇, q̈, . . . , t) = L(q, q̇, q̈, . . . , t)− Φ(q, q̇, q̈, . . . , t)

Here, L encodes natural dynamics, while Φ enforces strict dynamical recurrence.

Variational Principle for Higher-Order Systems

The equations of motion are given by the higher-order Euler-Lagrange equation:

n∑
k=0

(−1)k
dk

dtk

(
∂Lmod

∂q(k)

)
= 0

Expanding this:
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n∑
k=0

(−1)k
dk

dtk

(
∂L
∂q(k)

)
=

n∑
k=0

(−1)k
dk

dtk

(
∂Φ

∂q(k)

)

Restorative Force Structure

Assume:

Φ[q] =
∞∑
k=0

1

k!
· (q

(k)(t)− q(k)(0))2

(T − t)2(k+1)

Then:

∂Φ

∂q(k)
=

2

k!
· (q

(k)(t)− q(k)(0))

(T − t)2(k+1)

Thus, the equations of motion become:

n∑
k=0

(−1)k
dk

dtk

(
∂L
∂q(k)

)
=

n∑
k=0

(−1)k
dk

dtk

(
2

k!
· (q

(k)(t)− q(k)(0))

(T − t)2(k+1)

)

Interpretation

This equation governs the balance between natural evolution and cosmic correction:

• The LHS: classical inertial, potential, and higher-order dynamical terms.

• The RHS: singular restorative terms, intensifying as t → T , pulling q(k)(t) → q(k)(0).

As t → T , the restorative terms dominate, ensuring full return to the original dynamical
state.

Philosophical Insight

The universe enforces recurrence not just through entropy, but via deterministic dynami-
cal return. The equations describe not merely a return to position, but to every motion,
acceleration, and higher-order tendency the system ever held—completing the Time Cycle.

15 Equations of Motion from Variational Cancellation

The equations of motion in this framework arise from applying the variational principle to
the modified Lagrangian:

Lmod(q, q̇, q̈, . . . , t) = L(q, q̇, q̈, . . . , t)− Φ(q, q̇, q̈, . . . , t)

Here, L encodes natural dynamics, while Φ enforces strict dynamical recurrence.

15



Variational Principle for Higher-Order Systems

The equations of motion are given by the higher-order Euler-Lagrange equation:

n∑
k=0

(−1)k
dk

dtk

(
∂Lmod

∂q(k)

)
= 0

Expanding this:

n∑
k=0

(−1)k
dk

dtk

(
∂L
∂q(k)

)
=

n∑
k=0

(−1)k
dk

dtk

(
∂Φ

∂q(k)

)

Restorative Force Structure

Assume:

Φ[q] =
∞∑
k=0

1

k!
· (q

(k)(t)− q(k)(0))2

(T − t)2(k+1)

Then:

∂Φ

∂q(k)
=

2

k!
· (q

(k)(t)− q(k)(0))

(T − t)2(k+1)

Thus, the equations of motion become:

n∑
k=0

(−1)k
dk

dtk

(
∂L
∂q(k)

)
=

n∑
k=0

(−1)k
dk

dtk

(
2

k!
· (q

(k)(t)− q(k)(0))

(T − t)2(k+1)

)

Interpretation

This equation governs the balance between natural evolution and cosmic correction:

• The LHS: classical inertial, potential, and higher-order dynamical terms.

• The RHS: singular restorative terms, intensifying as t → T , pulling q(k)(t) → q(k)(0).

As t → T , the restorative terms dominate, ensuring full return to the original dynamical
state.

Philosophical Insight

The universe enforces recurrence not just through entropy, but via deterministic dynami-
cal return. The equations describe not merely a return to position, but to every motion,
acceleration, and higher-order tendency the system ever held—completing the Time Cycle.
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16 Conclusion

We have proposed a formalism that describes the end-phase of a finite, cyclic universe through
the interplay of two forces: destructive collapse and reconstructive return. Through a hi-
erarchy of singular potentials and variational mechanics, every layer of motion—position,
velocity, and higher derivatives—is guided to its original condition.
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Acta Mathematica, 13, 1–270.

[12] Lanczos, C. (1970). The Variational Principles of Mechanics (4th ed.). Dover Publica-
tions.

[13] El-Nabulsi, R. A. (2005). A generalized Lagrangian formulation involving higher-order
derivatives. Chaos, Solitons & Fractals, 24(4), 1037–1045.

[14] Gelfand, I. M., & Fomin, S. V. (2000). Calculus of Variations. Dover Publications.

17



[15] El-Nabulsi, R. A. (2005). A generalized Lagrangian formulation involving higher-order
derivatives. Chaos, Solitons & Fractals, 24(4), 1037–1045.

[16] Noether, E. (1918). Invariante Variationsprobleme. Nachrichten von der Gesellschaft
der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, 235–257.

18


