Redefining Mass in a Space-Only Physical Ontology

Evert van Brummelen

May 2025

Abstract

This paper proposes a redefinition of SI units based on a foundational ontology in which only space exists. Time is not treated as an independent entity but rather as a measure of change in spatial configuration. Consequently, the only fundamental units are [meter] and [second], denoted as [m] and [s]. All other units, including mass, must be derived from these. We explore the dimensional formulation of mass within this framework as $[m^x][s^y]$, analyze candidate values of x and y, and conclude that the best fit for mass is $[m][s^{-2}]$.

1. Introduction

In standard physics, the SI unit system treats mass, length, time, electric current, temperature, and others as fundamental dimensions. However, from a foundational perspective that treats **space as the only ontological substance**, this multiplicity of fundamental units is conceptually redundant.

In the ontology proposed here, **time is not a separate dimension but the measure** of spatial change. That is, time exists only as a parameter indexing the reconfiguration of space. Therefore, all physical quantities must be re-expressed solely using units of length ([m]) and time ([s]).

This framework mandates the redefinition of all SI units using only [m] and [s]. The present paper focuses specifically on one of the most essential quantities: mass.

2. Reserved Units: Charge and Time

To avoid confusion in dimensional analysis, some dimensional placeholders are reserved. For example:

- Charge is assigned the dimension $[m^0][s^0]$, a dimensionless placeholder in this model.
- **Time** is understood purely as change in spatial configuration, and thus is not fundamental in itself.

3. Redefining Mass: The Task

We assume that mass must take a dimensional form:

$$[M] = [m^x][s^y]$$

Our goal is to determine the best-fitting values of x and y such that mass:

- Behaves correctly in fundamental equations such as F = ma, $E = mc^2$, and $KE = \frac{1}{2}mv^2$
- Aligns with the interpretation of mass as resistance to spatial change
- Stays consistent with a universe in which only space exists

4. Evaluated Combinations of $[m^x][s^y]$

x	y	Dimensions	Score	Comment
1	-2	$[m \cdot s^{-2}]$	10	Perfect match to $F = ma, KE$,
				$E = mc^2$
2	-2	$[m^2 \cdot s^{-2}]$	7	Same as energy; overstates mass
1	-1	$[m \cdot s^{-1}]$	6	Like momentum per velocity
3	-2	$[m^3 \cdot s^{-2}]$	6	Suggests volumetric mass field
2	-1	$[m^2 \cdot s^{-1}]$	5	Like surface flow; mismatches key
				laws
3	0	$[m^{3}]$	5	Volume only; lacks temporal re-
				sistance
3	-1	$[m^3 \cdot s^{-1}]$	4	Volume flow rate; doesn't fit F or
				E
2	0	$[m^2]$	4	Area only; geometrically weak
0	-1	$[s^{-1}]$	3	Mass as frequency; doesn't gener-
				alize
1	0	[m]	3	Too simple; no dynamic aspect
3	-4	$[m^3 \cdot s^{-4}]$	3	Excessively steep; no equation fit
3	-6	$[m^3 \cdot s^{-6}]$	2	Overpowerful dimensionally
0.5	-1	$[m^{0.5} \cdot s^{-1}]$	2	Weak; no clear physical meaning
0.5	-2	$[m^{0.5} \cdot s^{-2}]$	2	Half-area inertia? Incoherent
0	-2	$[s^{-2}]$	2	Mass with no space? Breaks on-
				tology
-1	2	$[m^{-1} \cdot s^2]$	1	Inverse space; totally inconsistent
0	0	dimensionless	1	Reserved for charge

5. Conclusion

From the above evaluation, the dimensional form:

$$[M] = [m][s^{-2}]$$

is the best candidate for mass in a space-only ontological framework. This form:

- Preserves physical behavior in core equations
- Encodes mass as resistance to spatial acceleration
- Aligns with a geometry-driven model of the universe

Future work will involve redefining other SI units (force, energy, pressure, etc.) within this reduced ontology and exploring the implications for cosmology and field theories.

Acknowledgments

I want to thank Hans and Chai for their infinite support. This work is entirely original and independently developed by the author.

References

[1] Bureau International des Poids et Mesures (BIPM). "The International System of Units (SI)," 9th edition, 2019. https://www.bipm.org/en/publications/si-brochure