
 

Implementing Human+AI Collaboration Using Finite 
Object State Machine 

Author: Abhishek Parolkar (https://github.com/parolkar) 

Executive Summary 
Business software has stagnated for three decades, stuck in a paradigm where objects and 
CRUD operations define our work. Despite massive computing advances, we've merely moved 
these object-manipulation interfaces to the cloud rather than fundamentally rethinking how 
software models business processes. 
 
This essay proposes Finite Object State Machines (FOSMs) as a transformative alternative. 
Unlike CRUD systems that allow arbitrary field edits, FOSMs model business entities as objects 
moving through explicit, well-defined state transitions. This approach naturally captures 
business rules, enforces process compliance, and creates audit trails. 
 
More importantly, FOSMs provide the perfect structural foundation for human-AI collaboration. 
They create bounded contexts where responsibilities between humans and AI are clearly 
defined, preventing "AI gone rogue" scenarios while maximizing complementary strengths. AI 
makes FOSM implementation practical by automating the previously complex specification 
process, while FOSMs provide the guardrails that make AI deployment safe in regulated 
environments. 
 
By combining FOSMs with modern AI capabilities, organizations can transcend the 
object-manipulation paradigm, creating business software that truly advances human work 
rather than merely digitizing it. This symbiosis offers a revolutionary framework for building 
adaptive, compliant systems where humans and AI collaborate seamlessly within clear, 
verifiable boundaries. 

Introduction – "Work" & Computers 
The role of computers has fundamentally been to support human activities and eventually blend 
so seamlessly into our processes that we redefine what constitutes "work" itself. In the Industrial 
age, paper forms became computer applications, eliminating physical document libraries and 
creating desk jobs connected via computer networks. Fast-forward to today, and "email" has 
itself become synonymous with "work." This transformation is not simply technological but 
represents a profound redefinition of human labor in the information age. 



Section I – Business Software in Objects, Functions & Process 
Workflows 

1. Objects & CRUD Dominance 
For the last 30 years, software development has focused on translating business verbs and 
nouns into computational Objects and Functions. Since the late 1980s, the dominant abstraction 
for business software has been the database row. Enterprise suites such as SAP and Oracle 
codified the nouns of a business—Customer, Employee, Orders, Ledger—behind screens 
that offered just four principal verbs: Create, Read, Update, Delete (CRUD). These screens 
faithfully reproduced paper forms from the industrial age, eliminating kilometres of filing 
cabinets, yet also re-casting the very act of updating a record as "doing work". 

2. Analytics & Insights Layer 
As companies amassed mountains of rows, they needed to understand how and why those 
objects changed over time. This demand spawned data warehouses, BI tooling, and the modern 
analytics stack. The object model did not change; we merely added an observational layer that 
profiled its mutations. 

3. Workflow Optimisation 
Insights uncovered bottlenecks, giving rise to Business Process Management (BPM) tools that 
tried to stitch individual CRUD events into end-to-end workflows. At the same time, exploding 
data volumes turned into an infrastructure-scalability problem. For almost two decades the 
industry wasted time moving these objects—and their manipulation interfaces—to "someone 
else's computer": the cloud. Pioneers like Salesforce were right in the middle of this problem 
space, quickly capitalising on the need for ease of object manipulation over the internet (for 
most people: CRM in the cloud). 

4. Integration Tangle 
Cloud applications improved UX and availability and prepared us for remote work, but at the 
cost of a new mess: synchronising object state across dozens of SaaS silos. 
Integration-platform-as-a-service players such as Zapier emerged to keep copies of the same 
Customer or Invoice in sync across apps, underscoring how entrenched the object paradigm 
had become. This integration tangle brought with it significant cyber security hazards as 
sensitive business objects now traversed multiple third-party systems with varying security 
standards. 



5. Stagnation 
Despite exponential advances in compute—imagine today's EPYC processors in the hands of 
1990s developers—the underlying modelling technique has barely evolved. If such computing 
power had been available earlier, the unbundling of monolithic applications into smaller 
distributed parts might not have been the immediate need in business software. Yet functionally, 
we have made little progress in innovating how software is created to advance human work. 
Every business software remains fundamentally a set of objects with CRUD operations, 
wrapped in ever-thicker integration layers that struggle to keep data consistent across your 
computers and other people's computers. 

Section II – Rethinking Business Software as Finite Object State 
Machines 

1. FSM Primer 
For those unfamiliar with Finite State Machines (FSMs), understanding their fundamental 
primitives is essential: 
 

- States: Discrete conditions an entity can exist in (e.g., "Draft", "Pending Approval", 
"Approved") 

- Events: Triggers that can cause state changes (e.g., "Submit", "Approve", "Reject") 
- Transitions: Mappings from (Current State, Event) to Next State 
- Guards: Conditional logic that determines if a transition should occur 
- Side-effects: Actions executed during transitions (e.g., notifications, data updates) 

 
The term "Finite" is crucial here—it means the system has a countable, well-defined number of 
possible states, making the entire system's behavior predictable and verifiable. 

2. O for Object 
The "O" in FOSM refers to the business entity or Object involved in the work process. Unlike 
traditional object-oriented thinking where objects are passive data structures manipulated by 
external functions, in FOSMs, objects become active participants in their own lifecycle. 
 
Consider a "Customer" object: In CRUD systems, it's merely a collection of attributes to be 
created, read, updated, or deleted. In a FOSM paradigm, this same Customer traverses a 
well-defined state graph—visiting the store (state change: Prospect → Visitor), submitting 
support tickets (state change: Customer → SupportRequester), making purchases (state 
change: Shopper → Buyer), and so on. 
 

https://www.amd.com/en/products/processors/server/epyc/4th-generation-9004-and-8004-series.html#portfolio


Each of these transitions happens through explicit events, making the Customer object's journey 
through your business processes both visible and governable. The object itself becomes 
inseparable from its allowable state transitions. 

3. FOSM vs CRUD 
The fundamental difference between CRUD and FOSM paradigms is one of constraints and 
intention: 
 

- CRUD treats objects as bags of attributes that can be arbitrarily edited at any time. 
There's no inherent protocol defining when something can change or which 
combinations of changes make sense together. An Invoice might go directly from "Draft" 
to "Paid" without the required intermediate steps, simply because a developer or user 
edited a status field. 
 

- FOSM requires explicit, allowable transitions between well-defined states. An Invoice 
can only proceed to "Paid" if it first became "Approved" and then received a 
"PaymentReceived" event. The transition maps are first-class elements of the system 
design, not implicit in code scattered throughout the application. 

4. Composability & Hierarchical FOSMs 
One of the most powerful features of FOSMs is their natural composability. Complex business 
processes rarely exist in isolation—they nest within each other and communicate across 
boundaries. FOSMs elegantly model this reality through hierarchical state machines: 
 

- Parent-Child Relationships: A high-level process (e.g., "Order Fulfillment") can contain 
nested sub-processes ("Payment Processing", "Inventory Management"), each with their 
own state machines 

- Event Bubbling: Events can propagate up the hierarchy, allowing a child state change 
to potentially trigger transitions in parent states 

- Orthogonal Regions: Independent aspects of an object can be modeled as parallel 
state machines that evolve simultaneously (e.g., an Order's payment status and shipping 
status) 

 
This composability allows system designers to break down complex workflows into 
understandable, reusable components without sacrificing the holistic view. 

5. Auditability & Governance 
Traditional CRUD systems make auditing a retrospective, bolt-on concern. With FOSMs, 
auditability becomes a natural byproduct of the architecture: 
 



- Immutable Transition Logs: Every state change is recorded as an immutable event 
with metadata (who, when, why), creating a natural audit trail 

- Process Compliance: Because transitions are explicitly defined, policy violations 
become impossible by design rather than by vigilance 

- Root Cause Analysis: When issues arise, investigators can trace the exact sequence of 
events and decisions that led to the problematic state 

- Regulatory Alignment: Many regulated industries (finance, healthcare) already think in 
terms of allowable state transitions; FOSMs make this explicit in code 

 
These features transform governance from a cost center into a value-generating capability, 
particularly valuable in environments with high compliance requirements. 

6. Runtime Adaptability 
In rapidly changing business environments, software must evolve without disruption. FOSMs 
excel here: 
 

- Hot-Reloadable Definitions: State machine definitions can be updated without 
redeploying the entire application. New states and transitions can be introduced while 
the system continues operating. 

- Versioned State Maps: Multiple versions of a state machine can coexist, allowing 
in-flight processes to complete using their original rules while new processes follow 
updated workflows. 

- Migration Capabilities: Objects in one state can be programmatically migrated to 
compatible states in newer versions of the machine, with appropriate validation. 

- Feature Toggles: Specific transitions can be enabled/disabled dynamically based on 
operational needs or gradual rollout strategies. 

 
This adaptability significantly reduces the change management overhead that plagues 
traditional systems, where business process changes often require complete redeployments 
and downtime. 

Section III – FOSMs as a Catalyst for Human + AI Collaboration 
For decades, the industry struggled to adopt state machine approaches despite their theoretical 
benefits. The complexity of specifying complete state diagrams, transitions, and guards for 
real-world business processes seemed insurmountable. However, the emergence of 
sophisticated AI capabilities has fundamentally changed this calculus. Now, the combination of 
FOSMs and AI offers a revolutionary paradigm for how humans and machines collaborate in 
business software. 



1. AI-Assisted FOSM Design & Specification 
Historically, FOSM-based systems were challenging to implement because of the extensive 
upfront requirements engineering needed. AI completely transforms this landscape: 
 

- Domain-Specific Knowledge Extraction: LLMs can analyze existing documentation, 
code, and process descriptions to identify candidate states, events, and transitions 

- Conversation-to-Specification: Business stakeholders can have natural language 
conversations with AI, which then produces formal FOSM specifications 

- Automated Verification: AI can simulate thousands of paths through a state machine to 
identify edge cases, dead-ends, or unreachable states 

- Visual Generation: From textual descriptions, AI can generate visual state diagrams 
that humans can instantly comprehend and refine 

 
This symbiosis makes FOSM design accessible to organizations that previously lacked the 
specialized expertise required, dramatically lowering the adoption barrier. 

2. Bounded Task Collaboration 
One of the most powerful aspects of FOSMs is how they create bounded contexts for 
Human+AI collaboration. Each state in the machine represents a well-defined situation with 
clear tasks to be completed before transitioning to the next state: 
 

- Clear Division of Labor: States can explicitly indicate whether a human, AI, or 
combination should handle specific tasks 

- Predictable Handoffs: The transition boundaries provide natural synchronization points 
between human and AI activities 

- Quality Gates: Guards can ensure that neither humans nor AI agents can advance a 
process without meeting defined quality criteria 

- Governance Enforcement: Compliance requirements can be encoded directly in the 
state transition rules, making oversight transparent 

 
This bounded approach prevents the "AI gone rogue" scenario that concerns many 
organizations, as the machine's actions are always confined to the allowable transitions for the 
current state. 

3. LLM-Driven Transition Suggestions 
In traditional workflow systems, users often need extensive training to understand what actions 
they can take at each step. With FOSMs and AI: 
 

- Contextual Action Recommendations: LLMs can analyze the current state and object 
properties to suggest the most appropriate next transitions 



- Natural Language Prompting: "What can I do with this order now?" can return a 
prioritized list of valid transitions 

- Consequence Explanation: "What happens if I approve this invoice?" triggers AI to 
simulate the transition and explain downstream effects 

- Batch Processing Guidance: "Which of these 50 applications are ready for approval?" 
leverages the explicit state model to filter and prioritize work 

 
This creates an intuitive interface layer over complex business processes, making expert-level 
decision-making accessible to all users. 

4. Guard Evaluation via AI 
Guards are conditions that determine whether a transition can occur. Traditional systems 
implement these as rigid if-then rules, but AI enables far more sophisticated approaches: 
 

- Unstructured Data Assessment: Guards can evaluate sentiment in customer emails, 
analyze free-text explanations, or interpret attached documents 

- Multimodal Evaluations: Guards can process images ("Is this ID card valid?"), audio 
("Is the caller frustrated?"), or video evidence 

- Confidence Thresholds: If AI guard evaluation falls below certain confidence levels, the 
system can automatically route to human review 

- Learning from Decisions: Guard implementations can improve over time by observing 
human decisions in similar situations 

 
These capabilities allow FOSMs to handle processes that previously required human judgment 
at every step, significantly expanding their applicable domains. 

5. Natural-Language Interfaces 
The explicit structure of FOSMs creates the perfect foundation for natural language interfaces to 
business processes: 
 

- State-Aware Questions: "What's blocking this order?" → AI traverses the FOSM to 
identify the current state and its exit criteria 

- Counterfactual Reasoning: "Why wasn't this loan approved?" → AI can trace the path 
through the state machine and identify which guards prevented progression 

- Process Explanations: "How does our refund process work?" → AI can walk through 
the states and transitions in the relevant FOSM 

- Conversational Process Execution: Complex workflows can be advanced through 
natural conversation rather than form-filling 

 
This democratizes process knowledge, allowing anyone in the organization to understand and 
interact with complex workflows without specialized training. 



6. Autonomous Process Optimisation & Organizational Memory 
Beyond just executing processes, AI can help organizations improve their processes while 
preserving and enhancing institutional knowledge: 
 

- Bottleneck Identification: Reinforcement Learning (RL) agents—AI systems that learn 
through trial and error with feedback—can analyze transition time distributions to identify 
process blockages 

- A/B Testing Transitions: Different guard implementations or transition paths can be 
tested against business KPIs 

- Simulation-Based Optimization: AI can simulate thousands of process variations to 
recommend optimal state machine designs 

- Continuous Adaptation: As business conditions change, AI can suggest FOSM 
modifications to maintain optimal performance 

- Organizational Tacit Knowledge: The state machine data becomes the organization's 
"brain"—capturing not just what processes exist, but how they evolve, where they get 
stuck, and what constitutes successful paths 

 
This approach transforms FOSMs into living repositories of institutional knowledge, where the 
cumulative wisdom of the organization becomes encoded in the transition patterns, guard 
conditions, and historical paths. Unlike traditional process documentation that quickly becomes 
outdated, this knowledge continuously evolves alongside the business. Process optimization 
shifts from periodic, consultant-led initiatives to continuous, data-driven evolution grounded in 
the organization's actual operations. 

7. Safety & Alignment 
The explicit nature of FOSMs provides guard rails for AI autonomy: 
 

- Constrained Action Space: AI agents can only perform actions explicitly allowed by the 
current state's available transitions 

- Verifiable Behavior: The state machine itself serves as a formal specification against 
which AI behavior can be verified 

- Transparent Decision Boundaries: Guards make explicit exactly when an AI can and 
cannot take specific actions 

- Human Approval States: Critical transitions can require explicit human approval, 
creating natural checkpoints in autonomous processes 

 
These properties make FOSMs an ideal architecture for deploying AI in regulated, high-stakes 
environments where unconstrained AI action would be unacceptable. 



Section IV – Challenges and Limitations 
Despite their advantages, implementing FOSMs is not without challenges: 

State Explosion Problem 
As systems grow in complexity, the number of states and transitions can grow exponentially. A 
FOSM with numerous attributes, guards, and nested hierarchies can become unwieldy to 
design and maintain. 
 
Mitigation strategies include: 
 

- Hierarchical composition to encapsulate complexity 
- AI-assisted modeling to automatically identify optimal state groupings 
- Pattern-based design using proven templates for common business scenarios 

Human-AI Collaboration Boundaries 
Defining clear boundaries between human and AI responsibilities requires careful design: 
 

- Ambiguity in guard evaluation: When AI evaluates unstructured data for transitions, 
confidence thresholds must be established 

- Over-reliance on AI suggestions: Users may develop automation bias, accepting AI 
suggestions without critical evaluation 

- Skill degradation: As AI handles more decisions, human understanding of processes 
may diminish 

 
Organizations must invest in training that reinforces human judgment while leveraging AI 
capabilities. 

Legacy Integration Challenges 
Few organizations have the luxury of a greenfield implementation: 
 

- Mapping existing data models to state-based representations 
- Incremental adoption strategies to gradually transition from CRUD 
- Dual-paradigm operation during transition periods 

Implementation Effort 
The upfront design effort for FOSM can appear daunting: 
 

- Explicit state modeling requires more initial thought than implicit CRUD approaches 



- Cultural resistance to changing development paradigms 
- Tooling immaturity compared to decades-old CRUD frameworks 

 
However, this initial investment is offset by reduced maintenance costs, fewer bugs, and more 
predictable system behavior over the software's lifetime. 

Conclusion 
The transformation of business software from simple object manipulation to intelligent process 
collaboration represents one of the most significant opportunities in enterprise computing. For 
decades, we've accepted the limitations of the CRUD paradigm—its implicit workflows, 
scattered business logic, and poor fit for modeling real-world business processes—as 
necessary tradeoffs for developer productivity and database efficiency. 
 
Finite Object State Machines offer a way forward that is both theoretically sound and newly 
practical. By making the states, transitions, and guards of business objects explicit, FOSMs 
create a natural framework for defining how humans and AI can collaborate within bounded 
contexts. This explicitness brings transparency, compliance, and adaptability—qualities 
essential for regulated industries but beneficial for any complex business operation. 
 
The emergence of AI has eliminated the historical barriers to FOSM adoption. The 
once-prohibitive cost of specifying state machines is now dramatically reduced through 
AI-assisted design and specification. Moreover, the bounded context that FOSMs provide solves 
one of the most challenging problems in AI deployment: ensuring that autonomous systems 
operate within well-defined guardrails. 
 
As organizations increasingly rely on the complementary capabilities of humans and AI, the 
need for a structured framework to orchestrate this collaboration becomes critical. FOSMs 
provide this structure, allowing us to move beyond the simplistic object manipulation paradigm 
that has dominated business software for the past three decades. 
 
The future of enterprise software lies not in merely digitizing existing processes, but in 
fundamentally rethinking how humans and machines collaborate to achieve business outcomes. 
FOSMs provide the architectural foundation for this future—one where compliance is built-in, 
processes continuously improve, and human creativity is amplified rather than constrained by 
the software we use. 

References 
- Avnur, A. (2015). A Finite State Machine Model for Requirements Engineering. 

Requirements Engineering Magazine. Link 
 

https://re-magazine.ireb.org/articles/a-finite-state-machine-model


- Chen, Y., & Liu, J. (2018). Business Objects - A New Business Process Modeling 
Approach. SpringerLink. Link 
 

- Clarke, E. M., & Wing, J. M. (2001). Progress on the State Explosion Problem in Model 
Checking. ResearchGate. Link 
 

- David, I., & Harel, D. (1987). Statecharts: A Visual Formalism for Complex Systems. 
Science of Computer Programming, 8(3), 231-274. 
 

- Hamza, M. (2023). Human AI Collaboration in Software Engineering: Lessons Learned 
from a Hands On Workshop. arXiv. Link 
 

- Kumar, R. (2015). Finite State Machine, Case study of Air conditioning system. 
ResearchGate. Link 
 

- Steiner, R., & Masiero, P. (2013). Managing SPL Variabilities in UAV Simulink Models 
with Pure::variants and Hephaestus. CLEI Electronic Journal, 16(1). 
 

- Wagner, G. (2019). Designing State Machines with XState. Link 
 

https://link.springer.com/chapter/10.1007/978-3-319-94289-6_1
https://www.researchgate.net/publication/221025695_Progress_on_the_State_Explosion_Problem_in_Model_Checking
https://arxiv.org/abs/2312.10620
https://www.researchgate.net/publication/285599038_Finite_State_Machine_Case_study_of_Air_conditioning_system
https://xstate.js.org/

	Implementing Human+AI Collaboration Using Finite Object State Machine 
	Author: Abhishek Parolkar (https://github.com/parolkar) 
	Executive Summary 
	Introduction – "Work" & Computers 
	Section I – Business Software in Objects, Functions & Process Workflows 
	1. Objects & CRUD Dominance 
	2. Analytics & Insights Layer 
	3. Workflow Optimisation 
	4. Integration Tangle 
	5. Stagnation 

	Section II – Rethinking Business Software as Finite Object State Machines 
	1. FSM Primer 
	2. O for Object 
	3. FOSM vs CRUD 
	4. Composability & Hierarchical FOSMs 
	5. Auditability & Governance 
	6. Runtime Adaptability 

	Section III – FOSMs as a Catalyst for Human + AI Collaboration 
	1. AI-Assisted FOSM Design & Specification 
	2. Bounded Task Collaboration 
	3. LLM-Driven Transition Suggestions 
	4. Guard Evaluation via AI 
	5. Natural-Language Interfaces 
	6. Autonomous Process Optimisation & Organizational Memory 
	7. Safety & Alignment 

	Section IV – Challenges and Limitations 
	State Explosion Problem 
	Human-AI Collaboration Boundaries 
	Legacy Integration Challenges 
	Implementation Effort 

	Conclusion 
	References 


