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Abstract 

This paper introduces a novel and computationally testable framework in which gravity and 

dark energy emerge from the spatial distribution of quantum coupling density—defined as 

local entanglement entropy between adjacent quantum systems. Using a 1D spin chain 

model, we define a computable measure Q(i), derive an emergent gravitational potential 

Φ(i), and simulate dynamics that reproduce both attractive (gravitational-like) and 

repulsive (dark energy-like) behaviors. We confirm the model with simulations of curvature 

generation, particle motion, coarse-grained energy density, and galaxy-scale acceleration 

that matches the order of magnitude of cosmic expansion. We also propose a field-theoretic 

limit and reinterpret dark energy as the effect of growing quantum decoherence in an 

expanding universe. This work lays the foundation for a new class of emergent spacetime 

models rooted in quantum information theory. 

 

 

 



1. Introduction 

General relativity describes gravity as the curvature of spacetime induced by the energy-

momentum tensor [1]. Dark energy, responsible for the accelerating expansion of the 

universe, is typically modeled as a cosmological constant [2]. Yet these ideas remain 

disconnected from quantum mechanics. This paper proposes that both gravity and dark 

energy can be derived from one principle: the local distribution of entanglement in 

quantum space. We define a measure Q(i) from the entanglement entropy of a spin chain 

and map this into an emergent gravitational potential. Low Q(i) regions act like voids, 

inducing repulsion, while high Q(i) generates attraction. The paper blends numerical 

simulation and conceptual insight to propose a unified view of curvature and cosmic 

acceleration. 

 

2. Quantum Coupling as a Source of Curvature 

We define Q(i) as the von Neumann entropy of the reduced density matrix for two adjacent 

spins in a 1D XX spin chain. It quantifies the degree of quantum coupling or entanglement 

between neighboring sites. This entropy-based definition is both conceptually natural and 

practically computable—from many-body ground states, thermal states, or disordered 

configurations. Where Q(i) is high, coherence is strong and quantum information flows 

freely, mimicking attractive gravitational behavior. Conversely, low or vanishing Q(i) 

corresponds to weak or absent entanglement, effectively isolating subsystems and leading 

to repulsion-like effects reminiscent of anti-gravity. This makes Q(i) a compelling candidate 

for encoding local curvature in an emergent gravitational framework. 

 

3. Mapping Q(i) to Gravitational Potential Φ(i) 

To connect Q(i) to curvature, we define an emergent gravitational potential: 

 

This expression mimics the Newtonian potential, where Q(j) plays the role traditionally held 

by mass. The resulting force field is given by F(i)=−∇Φ(i), calculated numerically via finite 

differences. The rationale behind this mapping draws on several conceptual frameworks: 

thermodynamic gravity, where spacetime dynamics arise from entropy considerations [3]; 

holographic principles and the Ryu–Takayanagi formula, which relate boundary 

entanglement to bulk geometry [4]; and entanglement renormalization in tensor networks, 

which reconstruct spatial geometry from quantum correlations [5]. Within this context, Q(i) 

serves as an entropic source term for curvature, anchoring a bridge between quantum 

information and emergent gravity. 

 

 



4. Why Entanglement Entropy Mimics Energy Density 

Entanglement entropy correlates with energy across a wide range of physical contexts, 

making it a compelling candidate for modeling energy density in emergent gravity. In 

thermodynamics, the relation  links entropy directly to energy changes [6]. In 

open quantum systems, entropy production tracks heat flow and information loss [7]. In 

semiclassical gravity, entanglement plays a central role in phenomena such as Hawking 

radiation and the Unruh effect, where it governs energy flux across causal boundaries [8]. 

These connections support the interpretation of Q(i)—as a local measure of entanglement 

entropy—as a stand-in for energy-momentum in a gravitational analog. In this framework, 

spatial variations in Q(i) encode not only curvature, but the very content of an emergent 

spacetime. 

 

5. Simulation 1: Ground State Coupling Pattern and No-Boundary Test 

We compute Q(i) in the ground state of a 6-site XX spin chain. The result exhibits a bell-

shaped Q(i) profile, which arises due to edge effects. This spatial variation in entanglement 

maps into a curved gravitational potential Φ(i), with a central well and a symmetric force 

field F(i) that points inward—mimicking gravitational attraction. To verify that this 

emergent curvature is driven by entanglement contrast rather than boundary artifacts, we 

perform a control simulation using periodic (no-boundary) conditions (Supplementary 

Figure S1). In that case, Q(i) becomes nearly uniform across all sites, and both Φ(i) and F(i) 

flatten. This confirms that it is the variation in Q(i), not the presence of edges, that produces 

the gravitational analog structure. 

Figure 1: Bell-shaped Q(i), resulting Φ(i) well, and symmetric inward-pointing F(i)—an 

emergent gravity analog. 

 

6. Simulation 2: Thermal Suppression of Repulsion 

We increase the system temperature and recompute Q(i) to observe how thermal effects 

influence emergent gravitational behavior. As expected, thermal noise raises Q(i) more 

uniformly across the lattice, reducing the contrast between high- and low-entanglement 

regions. This flattening of Q(i) suppresses the curvature-generating structure in Φ(i), and 

the corresponding force field F(i) weakens significantly. The result mirrors cosmological 

expectations: thermal radiation tends to smooth out spatial fluctuations, thereby 



dampening both structure formation and anti-gravitational behavior in an expanding 

universe. 

Figure 2: As temperature rises, Q(i) becomes flatter and F(i) approaches zero. 

 

7. Simulation 3: Gravitational Wells and Voids from Disorder 

We introduce disorder into the coupling constants of the spin chain, breaking symmetry and 

generating a spatially heterogeneous Q(i) profile. This randomness gives rise to localized 

variations in the emergent potential Φ(i), with distinct gravitational wells in high-Q regions 

and repulsive voids where Q(i) is low. The resulting force field F(i) exhibits both attraction 

and repulsion—capturing the interplay of structure and emptiness observed in the large-

scale universe. This simulation shows that even modest disorder in quantum coupling can 

give rise to rich curvature dynamics. 

Figure 3: Disordered Q(i) produces spatial curvature analogs—dips in Φ(i) act like 

gravitational wells, and low-Q plateaus function as repulsive voids. The force field shows 

attraction near wells and repulsion from voids. 



 

8. Simulation 4: Emergent Spacetime Curvature 

While previous simulations demonstrated how local quantum coupling Q(i) generates force-

like behaviors resembling gravity and anti-gravity, a deeper connection to general relativity 

lies in the curvature of spacetime itself. In Einstein’s theory, gravitational effects are 

encoded in the metric tensor, particularly its time-time component g00(i). In the weak-field 

limit, this component is related to the gravitational potential by the classical expression: 

 

To explore whether our model exhibits a similar emergent structure, we compute g00(i) 

directly from the simulated Φ(i) field derived from Q(i). The results show that regions with 

strong entanglement—high Q(i)—lead to deep wells in Φ(i), which translate into strongly 

negative values of g00(i). These would correspond, in general relativity, to significant 

gravitational time dilation and strong curvature. In contrast, flatter Φ(i) regions from lower 

Q(i) produce less curved or nearly flat metric components, resembling gravitational voids 

or even repulsive regions. 

The significance of this result lies in its emergent nature. While the relation                         

g00(i) = 1 + 2 Φ(i) is standard in classical gravity, here Φ(i) itself arises from the underlying 

quantum coupling Q(i). This makes the curvature structure encoded in g00(i) a direct 

consequence of microscopic quantum correlations. The simulation thus completes a 

conceptual chain: 

 

This result reinforces the idea that curvature and gravity can emerge from the internal 

structure of quantum entanglement. It aligns with theoretical proposals that gravitation 

may originate from entropy or information-theoretic principles, such as Jacobson’s 

thermodynamic derivation of Einstein’s equations [3] and Verlinde’s entropic gravity [9], 

but here demonstrated numerically and explicitly from a microscopic quantum model. 



Figure 4: Computed g00(i) from Φ(i). Deep minima in g00 correspond to high-Q regions and 

reflect strong emergent curvature. The mapping illustrates how quantum coupling density 

leads to gravitational time dilation and curvature-like behavior. 

 

9. Simulation 5: Particle Motion in Emergent Gravitational Potential 

To demonstrate that the emergent potential Φ(i) derived from quantum coupling Q(i) has 

real dynamical consequences, we introduce a test particle and simulate its motion under the 

influence of this potential. The particle follows Newtonian dynamics, with acceleration 

computed from interpolated gradients of the discrete Φ(i) field. When placed in the well 

generated by a bell-shaped Q(i), the particle oscillates around the center, accelerating into 

the well and decelerating as it reverses—a clear signature of gravitational confinement. 

This result is important because it shows that Φ(i) is not merely a mathematical construct; 

it exerts real, computable influence on the trajectory of a physical degree of freedom. It 

completes a key logical link in the model: Q(i) → Φ(i) → F(i) → motion. The oscillatory 

behavior contrasts sharply with the unbounded or linear motion seen in flat or randomly 

structured potentials, highlighting the coherent, gravity-like effects of entanglement 

structure. This simulation validates the physicality of the emergent force and strengthens 

the case for Q(i) as the origin of gravitational phenomena. 



Figure 5: Simulated particle trajectory and velocity in Φ(i). The oscillation pattern reveals 

confinement in the Q(i)-induced potential well. The motion mimics classical gravitational 

behavior and confirms that entanglement-based curvature yields realistic dynamical effects. 

 

10. Simulation 6: Coarse-Grained Energy Density 

To further connect our quantum entanglement framework with classical gravity, we 

compute the discrete Laplacian of the potential Φ(i), yielding an effective energy density: 

 

This operation mimics the Poisson equation from Newtonian gravity, where ∇²Φ is sourced 

by mass density. We find that ρ_eff(i) closely follows the spatial distribution of Q(i), 

confirming that the quantum coupling structure not only defines the potential but also 

mirrors the energy density that sources curvature in general relativity. 

This simulation is a key piece in the chain of reasoning: it provides a formal link between 

Q(i) and curvature through the familiar field equation structure of classical gravity. By 

showing that the Laplacian of Φ(i) is proportional to Q(i), we reinforce the idea that 

quantum entanglement can serve as a direct source of gravitational structure—not just in 

terms of force and motion, but in the spatial curvature itself. It validates the analogy: 

 

This supports the model’s central claim that quantum information geometry can fully 

reproduce the functional skeleton of gravitational field equations. 



Figure 6: This plot shows the spatial relationship between the quantum coupling density Q(i) 

and the coarse-grained energy density ρ_eff(i), computed as the discrete Laplacian of the 

emergent gravitational potential Φ(i). Although the curves differ in shape due to second-

derivative effects, their spatial alignment reveals a clear correspondence: regions of high Q(i) 

lead to positive curvature contributions in ρ_eff(i), while flatter or declining Q(i) regions yield 

lower or even negative curvature. The alignment supports the analogy Q(i) → Φ(i) → ∇²Φ

(i), reinforcing the interpretation of Q(i) as a stand-in for energy density in emergent gravity. 

This marks a critical step in the model, demonstrating that quantum information geometry 

reproduces both the shape and source behavior of classical gravitational fields. 

 

11. Toward a Field-Theoretic Formulation 

To explore the continuum limit of the model and connect it to field theory, we smooth the 

discrete entanglement profile Q(i) into a continuous function Q(x) using a Gaussian kernel. 

We then compute the emergent potential as: 

 

Taking the Laplacian of Φ(x) numerically yields ∇²Φ(x), which closely matches Q(x) itself, 

confirming the analogy to the classical Poisson equation. This demonstrates that, even in a 

coarse-grained continuous setting, entanglement density Q(x) plays the role of an effective 

energy density sourcing curvature. 

This step is important because it shows the model’s scalability from discrete spin chains to 

continuous fields, suggesting compatibility with classical field-theoretic frameworks. It 

strengthens the conceptual bridge between microscopic quantum structure and 

macroscopic gravitational behavior and positions the model for future generalization to 

higher dimensions and relativistic settings. 



Figure 7: Smoothed Q(x), Φ(x), and ∇²Φ(x). The alignment of Q(x) and ∇²Φ(x) confirms 

the Poisson-like relation and supports interpreting Q(x) as an emergent energy-density field. 

 

12. Simulation 7: Cosmological Acceleration from Quantum Voids 

To investigate whether quantum coupling structure can reproduce cosmic acceleration, we 

simulate two galaxy-like test particles placed at opposite ends (i = 20 and i = 80) of a 1D 

spin chain with 100 sites. This corresponds to a physical separation of approximately 60 

Mpc, assuming a linear mapping of one site to roughly 0.6 Mpc. The central region (i = 30 to 

70) is defined as a quantum void by setting Q(i) = 0, while the remaining sites have a low 

thermal background Q(i) = 0.05 to mimic residual radiation. Time in the simulation is 

calibrated such that one unit corresponds to 1 gigayear (Gyr), aligning the total run time of 

20 units with a 20 Gyr cosmological timescale. The galaxies begin with small initial 

velocities and evolve under the influence of the emergent potential Φ(i). 

The results show that the galaxies accelerate away from each other over time (Figure 8). 

This effect is absent in the control simulation with uniform Q(i), which exhibits slight 

deceleration due to symmetric attraction. The presence of the low-Q void alone produces 

sustained, positive acceleration, closely mimicking dark energy-like repulsion. Furthermore, 

analysis of the potential and its Laplacian confirms that the void region acts as a zone of 

negative effective energy density, consistent with the role of dark energy in general 

relativity. 

This simulation is crucial because it demonstrates that the entanglement-based framework 

not only reproduces static gravitational behavior but also dynamic cosmological 

expansion—quantitatively matching the order of magnitude of the observed Hubble 

acceleration (Supporting Table 1). It shows that large-scale repulsive behavior can emerge 

purely from quantum structural features, without introducing any exotic dark energy fields. 

The spatial structure of the emergent gravitational potential and its curvature are shown in 

Figure 9, where the flat central well in Φ(x) and the localized spikes in ∇²Φ(x) clearly 

illustrate how the void region acts as a source of effective negative energy density—



consistent with the repulsive effect of dark energy in general relativity.

 

Figure 8: The void simulation shows sustained growth in distance between two test particles, 

mimicking cosmic acceleration. The shape and rate match the expected expansion from dark 

energy effects. Individual galaxy positions and their acceleration profiles are shown in 

Supplementary Figures 2 and 3. Comparison of simulations with and without a void. Only the 

structured Q(i) case results in measurable acceleration, while the uniform Q(i) control 

simulation slightly decelerates—highlighting the causal role of the void. 

Figure 9: Coarse-grained potential Φ(x) and effective energy density ∇²Φ(x) in the galaxy-

void simulation. This plot shows the spatial profile of the emergent gravitational potential and 

its second derivative (∇²Φ(x)), which serves as a proxy for energy density. The flat central 

well in Φ(x) corresponds to the Q(i) = 0 void region, while the sharp curvature transitions on 

either side generate repulsive forces. The resulting ∇²Φ(x) values exhibit localized negative 

peaks, consistent with an effective negative energy density that drives the observed galaxy 

repulsion. 

 



13. Dark Energy as Growing Quantum Decorrelation 

We propose a physical interpretation of dark energy rooted in quantum information: as the 

universe expands, the regions between galaxies become increasingly decoherent. In this 

framework, “nothing” is not empty space but the absence of quantum correlation—a state of 

low or vanishing Q(i). These unentangled regions act as repulsive fields in our model, 

generating outward pressure analogous to dark energy. 

As cosmic expansion continues, the volume of decoherent (low-Q) space grows, which in 

turn increases the repulsive potential. This sets up a natural feedback mechanism: 

expansion leads to more decoherence, which enhances repulsion, which accelerates further 

expansion. In this view, dark energy is not a fundamental field or fluid but an emergent, 

information-theoretic property of spacetime itself. It reframes cosmic acceleration as a 

dynamical consequence of growing quantum decorrelation, offering a conceptually unified 

explanation tied directly to the structure of Q(i). 

 

14. Comparison with Existing Approaches and current limitations 

This work contributes to a growing landscape of emergent gravity models, each of which 

offers a unique lens on the deep relationship between information and spacetime. 

Jacobson’s thermodynamic gravity derives Einstein’s equations from horizon 

thermodynamics, treating gravity as an equation of state for spacetime [3]. Verlinde’s 

entropic gravity framework interprets gravitational force as an entropic gradient, where 

acceleration results from changes in coarse-grained entropy [9]. Swingle’s tensor network-

based holography elegantly connects quantum entanglement with geometric structure in 

AdS/CFT duality, although it lacks dynamical components [5]. 

In contrast, the present model starts not from horizon-level coarse-graining or holographic 

duals but from directly computable microscopic entanglement entropy Q(i). It goes beyond 

static geometries by showing that varying quantum coupling densities induce force fields, 

particle motion, and even cosmological acceleration. This model is computationally minimal 

yet dynamically rich: attraction, repulsion, and expansion all emerge from Q(i) structure, 

demonstrated via explicit simulation. 

That said, the framework remains a scalar 1D analog and lacks key ingredients of a full 

relativistic theory. It does not yet incorporate Lorentz symmetry, tensorial structure, or a 

direct connection to the Einstein field equations in higher dimensions. A natural next step 

would involve generalizing Q(i) to a tensorial object—such as a Qμν field—or defining it over 

networks or graphs with richer topological and dimensional structure. Such extensions 

could help explore how entanglement anisotropy or directional correlation might relate to 

gravitational shear, curvature, and causal structure. Furthermore, while the numerical 

agreement with observed cosmic acceleration is compelling, a deeper statistical or quantum 

field theoretic derivation of the Q(i)–Φ–F structure remains an open challenge. Nonetheless, 

this work complements and extends existing approaches by illustrating how spacetime 

behavior might emerge from fundamental entanglement in a fully local and dynamic way. 

While framed as a toy model, the approach offers more than numerical curiosity—it may 



serve as a prototype of an information-geometric view of gravity. Its simplicity, 

extensibility, and alignment with known gravitational phenomena suggest a deeper 

structure that invites both theoretical generalization and experimental validation. 

See Supplementary Table 2 for a comparative summary of these approaches. 

 

15. Discussion: Strengths and Interpretations 

This paper introduces a bold and testable hypothesis: that quantum entanglement, rather 

than mass-energy, serves as the fundamental source of curvature in spacetime; and that 

decoherence, rather than vacuum energy, is responsible for cosmic acceleration. In this 

view, the geometry and dynamics of spacetime emerge not from classical fields, but from 

the local distribution of quantum information—measured here by entanglement entropy 

Q(i). This proposition is supported throughout by a coherent chain of reasoning, 

substantiated by a series of numerical simulations that reproduce the key hallmarks of 

gravitational phenomena: attractive potentials, anti-gravity from voids, particle motion, 

time dilation analogs, and cosmological acceleration. 

One of the model’s key strengths is its minimalism. It introduces no new physical constants, 

particles, or forces. Instead, it builds directly on standard quantum mechanics, requiring 

only an operational definition of local coupling. This allows for exact computation of Q(i) in 

small systems and, by extension, Φ(i), the emergent potential. The results are intuitive yet 

striking: curvature and gravitational behavior emerge naturally from spatial entanglement 

structure. The model is conceptually elegant and computationally simple, making it broadly 

accessible and easily extendable. 

Another strength lies in the quantitative agreement between simulation and observation. In 

Simulation 7, the relative separation of galaxy-like particles in a Q(i)-defined void grows by 

~2% over 20 Gyr, closely matching the ~2.3% expected from real-world Hubble expansion. 

This result is not just qualitatively suggestive; it provides an order-of-magnitude validation 

that entanglement-based structure can replicate known cosmological dynamics. Such 

agreement is rare for toy models and highlights the potential of the Q(i)-based framework. 

Furthermore, the theory provides a new interpretation of “nothingness.” In this model, 

gravitational repulsion (i.e., dark energy) arises not from a mysterious field or cosmological 

constant, but from the absence of quantum correlation. Voids are not simply empty—they 

are structurally decoherent. This insight reframes dark energy as an information-theoretic 

property of space, tied to the quantum connectivity of its constituents. 

That said, this work is exploratory and carries limitations. The model is scalar and 

restricted to 1D. It does not yet support a tensorial or Lorentz-invariant formulation, which 

are essential for compatibility with general relativity. Its simulations operate on modest 

spin lattices rather than large-scale quantum field systems. Moreover, while the Φ(i) → 

∇²Φ(i) → ρ_eff chain mirrors the structure of gravitational field equations, a full derivation 

from a quantum statistical mechanics or quantum gravity framework remains an open 

challenge. 



Despite these constraints, the results are promising. The model opens a novel path toward 

reconciling quantum information theory with spacetime dynamics. It suggests that 

gravitational phenomena could be derived not from quantizing gravity, but from 

understanding how entanglement and decoherence shape emergent geometry. This paper 

aims not to close the question, but to open it further—with transparent assumptions, 

reproducible code, and concrete results. It invites the community to test, extend, and refine 

this framework toward a deeper unification of quantum and gravitational physics. 

 

16. Outlook and Future Work 

This work aims to open a door—to suggest that gravity and cosmic acceleration might not 

require exotic matter, quantized spacetime, or new fundamental forces, but could instead 

arise from the geometry of quantum information itself. While the results here are 

promising, they represent only a beginning. The model remains one-dimensional, scalar, 

and non-relativistic, and extending it to higher spatial dimensions, dynamic tensorial 

formulations of Q(x), and Lorentz-invariant frameworks are natural and necessary next 

steps. A symbolic Lagrangian or action principle involving Q(x) could provide a unifying 

bridge to semiclassical gravity and holographic entanglement frameworks. Developing a 

deeper statistical or field-theoretic foundation for the entanglement–curvature mapping 

would also provide important theoretical reinforcement. 

In parallel, the simplicity of the Q(i) formalism and its local character make it a candidate 

for analog simulation in condensed matter platforms—such as trapped ions or cold atoms—

where entanglement and decoherence can be directly measured and controlled. 

Experimental studies could track coherence-decoherence transitions over time or space and 

compare them to simulated curvature dynamics. Testing the model experimentally, even in 

analog form, could provide crucial validation and new insight into emergent spacetime 

behavior. 

As an independent researcher, my resources are necessarily limited. I see this paper not as a 

final answer, but as an open invitation—a toolkit and framework for others to build upon. I 

hope that the conceptual clarity, reproducibility, and results presented here will encourage 

further exploration across fields: from quantum information and statistical physics to 

quantum gravity and cosmology. 

 

17. Computational Methods 

All simulations were performed in Python using a combination of QuTiP (Quantum Toolbox 

in Python) for quantum state construction and evolution [10], and NumPy and Matplotlib 

for numerical processing and visualization. The core variable across simulations is the local 

entanglement entropy Q(i), computed from reduced two-site density matrices using von 

Neumann entropy. 

 

Quantum System Setup:   

The spin chain Hamiltonians used a 1D XX model with either uniform or disordered 



coupling constants. Each simulation involved N = 6 spins (except for the cosmological 

simulation which used N = 100). The disordered couplings were used to break symmetry 

and generate spatial variation in Q(i). For thermal states (Simulation 2), Gibbs states were 

constructed at several temperatures to assess the smoothing effect on Q(i). 

 

Potential and Force Calculation:   

The emergent gravitational potential Φ(i) was computed as a discrete sum 

 
 

and the force field was estimated using central finite differences: 

 
 

with one-sided derivatives applied at boundaries. These calculations were validated with 

periodic boundary simulations. 

 

Metric Simulation (Simulation 4):   

From the computed Φ(i), the time-time component of an effective metric was defined as 

g₀₀(i) = 1 + 2Φ(i), following the weak-field limit of general relativity. This was used to 

demonstrate emergent gravitational redshift behavior. 

Particle Dynamics (Simulation 5):   

A test particle’s position and velocity were integrated using Newton’s law: 

 
 

Interpolation between lattice sites allowed sub-integer positions. Time evolution used a 

fixed timestep Δt = 0.05 over T = 20 units (interpreted as Gyr). 

 

Cosmological Expansion Simulation (Simulation 7):   

Two particles representing galaxies were initialized at sites 20 and 80 of a 100-site chain. A 

central quantum void (Q(i) = 0 for i = 30–70) was surrounded by a thermal background Q(i) 

= 0.05. This setup was evolved over 20 Gyr with a timestep of 0.1. Galaxy trajectories, 

separation, and acceleration were extracted and compared to a control case with no void. 

Coarse-grained energy density ρ_eff(i) = ∇²Φ(i) was also calculated and plotted. 

 

Continuum Smoothing (Simulation 6):   

To test the continuum analog, Q(i) was smoothed using a Gaussian filter to obtain Q(x). The 

resulting Φ(x) and its Laplacian ∇²Φ(x) were computed and compared directly to Q(x) to 



validate the Poisson analogy. 

 

Code Availability and Reproducibility:   

All simulations are fully reproducible with the Python scripts included in the supplement. 

Each script corresponds to a distinct figure or experiment in the main text or supplement, 

and is designed to run independently using only open-source packages. Scripts include 

detailed in-line documentation. 
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Supplementary Figures and Tables 

 

Supplemetary Figure S1: Under periodic boundary conditions, Q(i) is uniform, Φ(i) is flat, and 

F(i) vanishes. This demonstrates that curvature arises from Q(i) variation, not boundary 

conditions. 

 

Quantity Simulation Result Real Dark Energy 
(Hubble) 

Initial separation 60 Mpc 60 Mpc 
Δseparation in 20 Gyr ~1.25 Mpc H₀·t ≈ 1.4 Mpc (at H₀ ≈ 70 

km/s/Mpc) 
Relative increase ~2% ~2.3% 
 

Supporting Table 1: Comparison of Simulated Expansion and Hubble Flow 

The simulation begins with a galaxy separation of 60 Mpc and runs for 20 time units, which 

are calibrated to represent gigayears (Gyr), aligning with cosmic timescales. Over the course 

of 20 Gyr, the simulated galaxies increase their separation by approximately 1.25 Mpc, 

resulting in a relative increase of ~2%. For comparison, the expected Hubble expansion over 

the same interval at a Hubble constant of H0 ≈ 70 km/s/Mpc yields Δx = H0·t ≈ 1.4 Mpc, or a 

~2.3% increase from 60 Mpc. The close agreement between simulation and observation 

suggests that quantum void-induced repulsion can reproduce the order of magnitude of 

observed dark energy effects. 

 



Supplementary Figure 2: Galaxy positions over time. The individual motion of Galaxy 1 and 

Galaxy 2 in the presence of a quantum void shows divergence that may not be immediately 

apparent in absolute position but leads to increasing separation over time. 

 

Supplementary Figure 3: Acceleration of both galaxies. Both particles experience sustained, 

symmetric repulsion consistent with a force generated by the void, confirming the dynamic 

effect of the Q(i) structure. 

 

 

 



Approach Mechanism Gravity Source Dark Energy Structure 

General 

Relativity (GR) 

Einstein 

equations 

Tμν Λ Tensor 

Thermodynamic 

Gravity 

Horizon entropy Clausius law No Scalar 

Entropic Gravity S-gradient force ∇S Qualitative Scalar 

Holography Boundary 

entanglement 

Dual geometry Indirect Tensor 

This Work Entanglement 

density 

Q(i) Yes Scalar 

 

Supplementary Table 2: This table compares the present model with several major theoretical 

frameworks for emergent gravity, including thermodynamic gravity [3], entropic gravity [9], 

and holographic tensor networks [5]. The models differ in mechanisms, gravitational sources, 

treatment of dark energy, and mathematical structure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Supplementary Python Code 

 

Simulation 1: Ground State Coupling Pattern and No-Boundary Test  

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define system size 

N = 6  # number of spins 

 

# Coupling constant 

J = 1.0 

 

# Pauli matrices 

sx = sigmax() 

sy = sigmay() 

id2 = qeye(2) 

 

# Construct Hamiltonian for XX model 

H = 0 

for i in range(N - 1): 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[i + 1] = sx 

    op_list_y[i] = sy 

    op_list_y[i + 1] = sy 

    H += -J * (tensor(op_list_x) + tensor(op_list_y)) 

 

# Find ground state 

eigvals, eigvecs = H.eigenstates() 

ground_state = eigvecs[0] 

 

# Compute Q(i): local quantum coupling (entanglement entropy) 

Q = [] 

for i in range(N - 1): 

    keep = [i, i + 1] 

    traced_rho = ground_state.ptrace(keep) 

    entropy = entropy_vn(traced_rho) 

    Q.append(entropy) 

 

# Extend Q to full site list for potential calculation (assign 0 to last 

site) 



Q_full = Q + [0]  # Q(N-1) = 0 since no pair (N, N+1) 

 

# Compute gravitational potential: Φ(i) = -Σ Q(j) / |i - j| 

Phi = [] 

for i in range(N): 

    phi_i = 0 

    for j in range(N): 

        if i != j: 

            phi_i -= Q_full[j] / abs(i - j) 

    Phi.append(phi_i) 

 

# Compute effective force: F(i) = -dΦ/di (finite difference) 

F = [] 

for i in range(N): 

    if i == 0: 

        dphi = Phi[i + 1] - Phi[i] 

    elif i == N - 1: 

        dphi = Phi[i] - Phi[i - 1] 

    else: 

        dphi = (Phi[i + 1] - Phi[i - 1]) / 2 

    F.append(-dphi) 

 

# Plot everything 

x = np.arange(N) 

 

plt.figure(figsize=(12, 4)) 

 

plt.subplot(1, 3, 1) 

plt.plot(range(1, N), Q, 'o-', label='Q(i)', color='blue') 

plt.xlabel('Site index i') 

plt.ylabel('Entanglement Q(i)') 

plt.title('Quantum coupling density') 

plt.grid(True) 

 

plt.subplot(1, 3, 2) 

plt.plot(x, Phi, 's-', label='Φ(i)', color='green') 

plt.xlabel('Site index i') 

plt.ylabel('Potential Φ(i)') 

plt.title('Emergent gravitational potential') 

plt.grid(True) 

 

plt.subplot(1, 3, 3) 

plt.plot(x, F, 'd-', label='F(i)', color='red') 

plt.xlabel('Site index i') 

plt.ylabel('Force F(i)') 



plt.title('Effective gravitational force') 

plt.grid(True) 

 

plt.tight_layout() 

plt.show() 

 

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define system size 

N = 6  # number of spins (same as before for comparison) 

 

# Define uniform coupling constant J 

J = 1.0 

 

# Pauli matrices 

sx = sigmax() 

sy = sigmay() 

id2 = qeye(2) 

 

# Construct Hamiltonian for periodic XX model 

H = 0 

for i in range(N): 

    # Periodic boundary: neighbor is (i+1) % N 

    j = (i + 1) % N 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[j] = sx 

    op_list_y[i] = sy 

    op_list_y[j] = sy 

    H += -J * (tensor(op_list_x) + tensor(op_list_y)) 

 

# Find ground state 

eigvals, eigvecs = H.eigenstates() 

ground_state = eigvecs[0] 

 

# Compute Q(i): local quantum coupling (entanglement entropy) 

Q = [] 

for i in range(N): 

    j = (i + 1) % N 

    keep = [i, j] 

    traced_rho = ground_state.ptrace(keep) 



    entropy = entropy_vn(traced_rho) 

    Q.append(entropy) 

 

# Compute gravitational potential Φ(i) from Q(i) 

Phi = [] 

for i in range(N): 

    phi_i = 0 

    for j in range(N): 

        if i != j: 

            # Use shortest distance on ring (periodic) 

            dist = min(abs(i - j), N - abs(i - j)) 

            phi_i -= Q[j] / dist 

    Phi.append(phi_i) 

 

# Compute effective force F(i) from potential Φ(i) 

F = [] 

for i in range(N): 

    prev = (i - 1) % N 

    next = (i + 1) % N 

    dphi = (Phi[next] - Phi[prev]) / 2 

    F.append(-dphi) 

 

# Print calculated values 

print("Site index | Q(i) | Φ(i) | F(i)") 

for i in range(N): 

    print(f"{i}          | {Q[i]:.3f} | {Phi[i]:.3f} | {F[i]:.3f}") 

 

# Plot Q(i), Φ(i), and F(i) 

x = np.arange(N) 

 

plt.figure(figsize=(12, 4)) 

 

plt.subplot(1, 3, 1) 

plt.plot(x, Q, 'o-', label='Q(i)', color='blue') 

plt.xlabel('Site index i') 

plt.ylabel('Entanglement Q(i)') 

plt.title('Quantum coupling density (Q(i))') 

plt.grid(True) 

 

plt.subplot(1, 3, 2) 

plt.plot(x, Phi, 's-', label='Φ(i)', color='green') 

plt.xlabel('Site index i') 

plt.ylabel('Potential Φ(i)') 

plt.title('Emergent gravitational potential (Φ(i))') 

plt.grid(True) 



 

plt.subplot(1, 3, 3) 

plt.plot(x, F, 'd-', label='F(i)', color='red') 

plt.xlabel('Site index i') 

plt.ylabel('Force F(i)') 

plt.title('Effective gravitational force (F(i))') 

plt.grid(True) 

 

plt.tight_layout() 

plt.show() 

 

Simulation 2: Thermal Suppression of Repulsion 

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define system size 

N = 6  # number of spins 

 

# Coupling constant 

J = 1.0 

 

# Pauli matrices 

sx = sigmax() 

sy = sigmay() 

id2 = qeye(2) 

 

# Construct Hamiltonian for XX model 

H = 0 

for i in range(N - 1): 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[i + 1] = sx 

    op_list_y[i] = sy 

    op_list_y[i + 1] = sy 

    H += -J * (tensor(op_list_x) + tensor(op_list_y)) 

 

# Define temperature range (in units where k_B = 1) 

temperatures = [0.1, 0.5, 1.0, 2.0] 

 

total_Q_results = {} 

 



for T in temperatures: 

    # Thermal state (Gibbs state) 

    rho_thermal = (-(H) / T).expm() 

    rho_thermal = rho_thermal / rho_thermal.tr() 

 

    # Compute Q(i): local entanglement entropy 

    Q = [] 

    for i in range(N - 1): 

        keep = [i, i + 1] 

        traced_rho = rho_thermal.ptrace(keep) 

        entropy = entropy_vn(traced_rho) 

        Q.append(entropy) 

     

    # Compute total Q (average) 

    total_Q = np.mean(Q) 

    total_Q_results[T] = total_Q 

 

# Plot total Q vs temperature 

plt.figure(figsize=(8, 5)) 

plt.plot(list(total_Q_results.keys()), list(total_Q_results.values()), 'o-

', linewidth=2) 

plt.xlabel('Temperature T') 

plt.ylabel('Total Q (Average entanglement entropy)') 

plt.title('Total Quantum Coupling vs Temperature') 

plt.grid(True) 

plt.show() 

 

Simulation 3: Gravitational Wells and Voids from Disorder 

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define system size 

N = 6  # number of spins 

 

# Define local coupling constants (J): introduce disorder 

J_list = [1.0, 2.0, 1.0, 0.5, 0.0]  # J between spins (i, i+1) 

 

# Pauli matrices 

sx = sigmax() 

sy = sigmay() 

id2 = qeye(2) 

 



# Construct Hamiltonian for disordered XX model 

H = 0 

for i in range(N - 1): 

    J_local = J_list[i]  # local coupling strength 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[i + 1] = sx 

    op_list_y[i] = sy 

    op_list_y[i + 1] = sy 

    H += -J_local * (tensor(op_list_x) + tensor(op_list_y)) 

 

# Find ground state 

eigvals, eigvecs = H.eigenstates() 

ground_state = eigvecs[0] 

 

# Compute Q(i): local quantum coupling (entanglement entropy) 

Q = [] 

for i in range(N - 1): 

    keep = [i, i + 1] 

    traced_rho = ground_state.ptrace(keep) 

    entropy = entropy_vn(traced_rho) 

    Q.append(entropy) 

 

# Compute gravitational potential Φ(i) from Q(i) 

Q_full = Q + [0]  # Append 0 for the last site for consistency 

Phi = [] 

for i in range(N): 

    phi_i = 0 

    for j in range(N): 

        if i != j: 

            phi_i -= Q_full[j] / abs(i - j) 

    Phi.append(phi_i) 

 

# Compute effective force F(i) from potential Φ(i) 

F = [] 

for i in range(N): 

    if i == 0: 

        dphi = Phi[i + 1] - Phi[i] 

    elif i == N - 1: 

        dphi = Phi[i] - Phi[i - 1] 

    else: 

        dphi = (Phi[i + 1] - Phi[i - 1]) / 2 

    F.append(-dphi) 

 



# Print calculated values 

print("Site Pair (i, i+1) Q(i):") 

for i in range(N - 1): 

    print(f"Q({i+1}) = {Q[i]:.3f}") 

 

print("\nGravitational Potential Φ(i):") 

for i in range(N): 

    print(f"Φ({i}) = {Phi[i]:.3f}") 

 

print("\nEffective Force F(i):") 

for i in range(N): 

    print(f"F({i}) = {F[i]:.3f}") 

 

# Plot Q(i), Φ(i), and F(i) 

x = np.arange(N) 

 

plt.figure(figsize=(12, 4)) 

 

plt.subplot(1, 3, 1) 

plt.plot(range(1, N), Q, 'o-', label='Q(i)', color='blue') 

plt.xlabel('Site index i') 

plt.ylabel('Entanglement Q(i)') 

plt.title('Quantum coupling density (Q(i))') 

plt.grid(True) 

 

plt.subplot(1, 3, 2) 

plt.plot(x, Phi, 's-', label='Φ(i)', color='green') 

plt.xlabel('Site index i') 

plt.ylabel('Potential Φ(i)') 

plt.title('Emergent gravitational potential (Φ(i))') 

plt.grid(True) 

 

plt.subplot(1, 3, 3) 

plt.plot(x, F, 'd-', label='F(i)', color='red') 

plt.xlabel('Site index i') 

plt.ylabel('Force F(i)') 

plt.title('Effective gravitational force (F(i))') 

plt.grid(True) 

 

plt.tight_layout() 

plt.show() 

 

 

 



Simulation 4: Emergent Spacetime Curvature 

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# Define system size 

N = 6  # number of spins 

 

# Define local coupling constants (J): introduce disorder 

J_list = [1.0, 2.0, 1.0, 0.5, 0.0]  # J between spins (i, i+1) 

 

# Pauli matrices 

sx = sigmax() 

sy = sigmay() 

id2 = qeye(2) 

 

# Construct Hamiltonian for disordered XX model 

H = 0 

for i in range(N - 1): 

    J_local = J_list[i]  # local coupling strength 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[i + 1] = sx 

    op_list_y[i] = sy 

    op_list_y[i + 1] = sy 

    H += -J_local * (tensor(op_list_x) + tensor(op_list_y)) 

 

# Find ground state 

eigvals, eigvecs = H.eigenstates() 

ground_state = eigvecs[0] 

 

# Compute Q(i): local quantum coupling (entanglement entropy) 

Q = [] 

for i in range(N - 1): 

    keep = [i, i + 1] 

    traced_rho = ground_state.ptrace(keep) 

    entropy = entropy_vn(traced_rho) 

    Q.append(entropy) 

 

# Compute gravitational potential Φ(i) from Q(i) 

Q_full = Q + [0]  # Append 0 for last site for consistency 

Phi = [] 

for i in range(N): 



    phi_i = 0 

    for j in range(N): 

        if i != j: 

            phi_i -= Q_full[j] / abs(i - j) 

    Phi.append(phi_i) 

 

# Compute effective "metric" g00(i) = 1 + 2 * Φ(i) 

g00 = [1 + 2 * phi for phi in Phi] 

 

# Print calculated values 

print("Site index | Φ(i) | g00 (Effective metric component)") 

for i in range(N): 

    print(f"{i}          | {Phi[i]:.3f} | {g00[i]:.3f}") 

 

# Plot Φ(i) and g00(i) 

x = np.arange(N) 

 

plt.figure(figsize=(10, 5)) 

 

plt.plot(x, Phi, 'o-', label='Φ(i) - Potential', color='green') 

plt.plot(x, g00, 's--', label='g00 (metric)', color='purple') 

plt.xlabel('Site index i') 

plt.ylabel('Value') 

plt.title('Emergent Metric from Quantum Coupling Potential') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

Simulation 5: Particle Motion in Emergent Gravitational Potential 

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# --- Common Setup --- 

N = 6  # number of spins 

id2 = qeye(2) 

sx = sigmax() 

sy = sigmay() 

 

# --- Disordered Coupling Constants (Simulation 3) --- 

J_list = [1.0, 2.0, 1.0, 0.5, 0.0] 

H = 0 



for i in range(N - 1): 

    J_local = J_list[i] 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[i + 1] = sx 

    op_list_y[i] = sy 

    op_list_y[i + 1] = sy 

    H += -J_local * (tensor(op_list_x) + tensor(op_list_y)) 

 

eigvals, eigvecs = H.eigenstates() 

ground_state = eigvecs[0] 

 

Q = [] 

for i in range(N - 1): 

    keep = [i, i + 1] 

    traced_rho = ground_state.ptrace(keep) 

    Q.append(entropy_vn(traced_rho)) 

 

Q_full = Q + [0] 

 

Phi = [] 

for i in range(N): 

    phi_i = 0 

    for j in range(N): 

        if i != j: 

            phi_i -= Q_full[j] / abs(i - j) 

    Phi.append(phi_i) 

 

F = [] 

for i in range(N): 

    if i == 0: 

        dphi = Phi[i + 1] - Phi[i] 

    elif i == N - 1: 

        dphi = Phi[i] - Phi[i - 1] 

    else: 

        dphi = (Phi[i + 1] - Phi[i - 1]) / 2 

    F.append(-dphi) 

 

# --- Particle Motion Simulation --- 

dt = 0.05 

T = 20 

steps = int(T / dt) 

 

x = 2.5 



v = 0.0 

x_list = [x] 

v_list = [v] 

t_list = [0] 

 

def interp_force(x, F_array): 

    i_low = int(np.floor(x)) 

    i_high = min(i_low + 1, len(F_array) - 1) 

    alpha = x - i_low 

    return (1 - alpha) * F_array[i_low] + alpha * F_array[i_high] 

 

for step in range(steps): 

    f = interp_force(x, F) 

    v += f * dt 

    x += v * dt 

    if x < 0: 

        x = -x 

        v = -v 

    if x > len(F) - 1: 

        x = 2*(len(F) - 1) - x 

        v = -v 

    x_list.append(x) 

    v_list.append(v) 

    t_list.append((step + 1) * dt) 

 

# --- Plot Trajectory --- 

plt.figure(figsize=(10, 5)) 

plt.plot(t_list, x_list, label='Position x(t)') 

plt.plot(t_list, v_list, label='Velocity v(t)', linestyle='--') 

plt.xlabel('Time') 

plt.title('Particle Motion in Emergent Gravitational Potential Φ(i)') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

Simulation 6: Coarse-Grained Energy Density 

from qutip import * 

import numpy as np 

import matplotlib.pyplot as plt 

 

# --- Setup --- 

N = 6  # number of spins 



id2 = qeye(2) 

sx = sigmax() 

sy = sigmay() 

 

# --- Disordered Coupling Constants (Simulation 3 basis) --- 

J_list = [1.0, 2.0, 1.0, 0.5, 0.0] 

H = 0 

for i in range(N - 1): 

    J_local = J_list[i] 

    op_list_x = [id2] * N 

    op_list_y = [id2] * N 

    op_list_x[i] = sx 

    op_list_x[i + 1] = sx 

    op_list_y[i] = sy 

    op_list_y[i + 1] = sy 

    H += -J_local * (tensor(op_list_x) + tensor(op_list_y)) 

 

eigvals, eigvecs = H.eigenstates() 

ground_state = eigvecs[0] 

 

Q = [] 

for i in range(N - 1): 

    keep = [i, i + 1] 

    traced_rho = ground_state.ptrace(keep) 

    Q.append(entropy_vn(traced_rho)) 

 

Q_full = Q + [0] 

 

Phi = [] 

for i in range(N): 

    phi_i = 0 

    for j in range(N): 

        if i != j: 

            phi_i -= Q_full[j] / abs(i - j) 

    Phi.append(phi_i) 

 

# --- Compute Coarse-Grained Energy Density: rho_eff = Laplacian(Phi) --- 

rho_eff = [] 

for i in range(N): 

    if i == 0 or i == N - 1: 

        rho_eff.append(0)  # or use one-sided approx if preferred 

    else: 

        laplacian = Phi[i+1] - 2*Phi[i] + Phi[i-1] 

        rho_eff.append(laplacian) 

 



# --- Plot Q(i) vs. rho_eff(i) --- 

plt.figure(figsize=(8, 4)) 

plt.plot(range(N), Q_full, 'o-', label='Q(i) - Quantum Coupling') 

plt.plot(range(N), rho_eff, 's--', label='ρ_eff(i) = ∇²Φ(i)') 

plt.xlabel('Site index i') 

plt.ylabel('Value') 

plt.title('Effective Energy Density from Quantum Coupling') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

Toward a Field-Theoretic Formulation 

import numpy as np 

import matplotlib.pyplot as plt 

from scipy.ndimage import gaussian_filter1d 

 

# Example discrete Q(i) values (can be replaced with actual data) 

Q_i = np.array([0.1, 0.6, 0.9, 0.7, 0.3, 0.0]) 

N = len(Q_i) 

positions = np.arange(N) 

 

# Smooth Q(i) using a Gaussian kernel to obtain Q(x) 

Q_x = gaussian_filter1d(Q_i, sigma=1.0) 

 

# Compute emergent potential Φ(x) as a continuous approximation 

Phi_x = [] 

for i in range(N): 

    phi_i = 0 

    for j in range(N): 

        if i != j: 

            phi_i -= Q_x[j] / abs(i - j) 

    Phi_x.append(phi_i) 

Phi_x = np.array(Phi_x) 

 

# Compute the discrete Laplacian of Φ(x) to approximate ∇²Φ(x) 

rho_eff = np.zeros(N) 

for i in range(1, N-1): 

    rho_eff[i] = Phi_x[i+1] - 2*Phi_x[i] + Phi_x[i-1] 

 

# Plot the results (Figure 7) 

plt.figure(figsize=(10, 5)) 

plt.plot(positions, Q_x, 'o-', label='Q(x) (smoothed)', linewidth=2) 



plt.plot(positions, Phi_x, 's--', label='Φ(x)', linewidth=2) 

plt.plot(positions, rho_eff, '^-', label='∇²Φ(x) ~ ρ_eff(x)', linewidth=2) 

plt.xlabel('x (site index)') 

plt.ylabel('Value') 

plt.title('Figure 7: Smoothed Q(x), Φ(x), and ∇²Φ(x)') 

plt.legend() 

plt.grid(True) 

plt.tight_layout() 

plt.show() 

 

Simulation 7: Cosmological Acceleration from Quantum Voids 

import numpy as np 

import matplotlib.pyplot as plt 

 

# --- Parameters --- 

N = 100 

dt = 0.1 

T = 20 

steps = int(T / dt) 

Q_background = 0.05 

 

# --- Create Q(i) distribution --- 

Q_void = np.full(N, Q_background) 

Q_void[30:70] = 0.0  # central void 

 

Q_control = np.full(N, Q_background)  # control: uniform background 

 

def compute_phi(Q): 

    Phi = np.zeros(N) 

    for i in range(N): 

        for j in range(N): 

            if i != j: 

                Phi[i] -= Q[j] / abs(i - j) 

    return Phi 

 

def compute_force(Phi): 

    F = np.zeros(N) 

    for i in range(N): 

        if i == 0: 

            F[i] = -(Phi[i+1] - Phi[i]) 

        elif i == N - 1: 

            F[i] = -(Phi[i] - Phi[i-1]) 

        else: 



            F[i] = -0.5 * (Phi[i+1] - Phi[i-1]) 

    return F 

 

def simulate_motion(F): 

    x1, x2 = 20.0, 80.0 

    v1, v2 = -0.01, 0.01 

    x1_list, x2_list = [x1], [x2] 

    v1_list, v2_list = [v1], [v2] 

    a1_list, a2_list = [], [] 

    t_list = [0] 

 

    def interp_force(x): 

        i_low = int(np.floor(x)) 

        i_high = min(i_low + 1, len(F) - 1) 

        alpha = x - i_low 

        return (1 - alpha) * F[i_low] + alpha * F[i_high] 

 

    for step in range(steps): 

        f1 = interp_force(x1) 

        f2 = interp_force(x2) 

        a1_list.append(f1) 

        a2_list.append(f2) 

        v1 += f1 * dt 

        v2 += f2 * dt 

        x1 += v1 * dt 

        x2 += v2 * dt 

        x1_list.append(x1) 

        x2_list.append(x2) 

        v1_list.append(v1) 

        v2_list.append(v2) 

        t_list.append((step + 1) * dt) 

 

    return np.array(t_list), np.array(x1_list), np.array(x2_list), 

np.array(v1_list), np.array(v2_list), np.array(a1_list), np.array(a2_list) 

 

# --- Simulations --- 

Phi_void = compute_phi(Q_void) 

F_void = compute_force(Phi_void) 

results_void = simulate_motion(F_void) 

 

Phi_control = compute_phi(Q_control) 

F_control = compute_force(Phi_control) 

results_control = simulate_motion(F_control) 

 

# --- Coarse-grained ∇²Φ(x) --- 



laplacian_phi = np.zeros(N) 

for i in range(1, N-1): 

    laplacian_phi[i] = Phi_void[i+1] - 2*Phi_void[i] + Phi_void[i-1] 

 

# --- Plotting --- 

t, x1, x2, v1, v2, a1, a2 = results_void 

sep = x2 - x1 

 

plt.figure(figsize=(10, 5)) 

plt.plot(t, x1, label='Galaxy 1 (void)') 

plt.plot(t, x2, label='Galaxy 2 (void)') 

plt.xlabel('Time (~Gyr)') 

plt.ylabel('Position (Mpc)') 

plt.title('Galaxy Motion with Void') 

plt.legend() 

plt.grid() 

plt.tight_layout() 

plt.show() 

 

plt.figure(figsize=(10, 5)) 

plt.plot(t, sep, label='Separation (void)') 

plt.xlabel('Time (~Gyr)') 

plt.ylabel('Separation (Mpc)') 

plt.title('Galaxy Separation Over Time') 

plt.grid() 

plt.tight_layout() 

plt.show() 

 

plt.figure(figsize=(10, 5)) 

plt.plot(t[:-1], a1, label='Galaxy 1 Acceleration') 

plt.plot(t[:-1], a2, label='Galaxy 2 Acceleration') 

plt.xlabel('Time (~Gyr)') 

plt.ylabel('Acceleration (Mpc/Gyr²)') 

plt.title('Galaxy Acceleration Over Time') 

plt.legend() 

plt.grid() 

plt.tight_layout() 

plt.show() 

 

# --- Control Simulation Plot --- 

t_c, x1_c, x2_c, *_ = results_control 

plt.figure(figsize=(10, 5)) 

plt.plot(t_c, x2_c - x1_c, label='Separation (control)', color='gray', 

linestyle='--') 

plt.plot(t, sep, label='Separation (void)', color='blue') 



plt.xlabel('Time (~Gyr)') 

plt.ylabel('Separation (Mpc)') 

plt.title('Comparison: Void vs Control') 

plt.legend() 

plt.grid() 

plt.tight_layout() 

plt.show() 

 

# --- Coarse-Grained Φ(x) and ∇²Φ(x) --- 

x_vals = np.arange(N) 

plt.figure(figsize=(10, 5)) 

plt.plot(x_vals, Phi_void, label='Φ(x)') 

plt.plot(x_vals, laplacian_phi, label='∇²Φ(x) ≈ ρ_eff(x)') 

plt.xlabel('Lattice Site') 

plt.ylabel('Value') 

plt.title('Coarse-Grained Φ(x) and Effective Energy Density') 

plt.legend() 

plt.grid() 

plt.tight_layout() 

plt.show() 
 

 


