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Abstract 

The known approximations for the number of prime numbers π(x) include Gauss’s 

formula x/ln(x) and Riemann’s formula through the logarithmic integral Li(x). The latter is 

known for its high accuracy but is difficult to compute numerically, as it requires 

integration. 

In the present work we propose a new approximation with an elementary structure 

and exceptionally high precision, which gives much more accurate results compared to 

Gauss’s formula and almost reaches those of Li. 

In essence, the new formula represents an improved Gauss formula by turning the 

logarithm base in the denominator from fixed natural (ln) to one with a floating base. 

Empirically, very accurate results are established in the range above. For large values, 

the formula approaches that of Gauss and both become equally accurate, along with Li. 

Proposed formula 
(Theoretical justification – a bit smiley, but absolutely rigorous follows further in the article…) 

      π(x) ≈
x

log
(e + 

2.93
ln(x)

)
x
 

Where: 

π(x) – predicted number of primes 

x – range considered 

The number "2.93" divided by ln(x) is a parameter empirically derived through tests 

in the range 𝟏𝟎𝟑≤ x ≤ 𝟏𝟎𝟏𝟐. 



It is not absolutely mandatory, nor is the logarithm base correcting part of the formula 

fixed. This is a one-time test of the idea with quite a good result. The idea itself can be 

further developed, along with the formula. Hypothetically, following the logic of the 

“floating logarithm base,” it may be possible to reach a formula for absolutely exact 

determination of the number of prime numbers in a given interval. 

A huge advantage of the formula is the simplification of calculations. Only logarithms 

and elementary arithmetic operations are used, which is much simpler compared to 

Riemann’s approach, relying on integration, non-trivial zeros, and enormous 

computational complexity. 

Comparison results 

In tests for x = 𝟏𝟎𝟑 – 𝟏𝟎𝟏𝟐, the new formula consistently gives more accurate results 

than Gauss and very close to Riemann (Li). Even at 𝟏𝟎𝟑 it turned out to be more accurate 

than Li. 

Two more tests were carried out with calculated values for 𝟏𝟎𝟏𝟎𝟎and 𝟏𝟎𝟐𝟎𝟎. The base 

used was not Li, but Riemann’s own formula, using non-trivial zeros, which is the most 

accurate method for predicting the number of prime numbers at high ranges. A quite high 

accuracy of the new formula is seen in this range as well. 

A test was also performed with Dusart intervals in the ranges 𝟏𝟎𝟓𝟎𝟎 and 𝟏𝟎𝟏𝟎𝟎𝟎. From 

it, it is seen that the new formula produces a result inside the intervals in which the 

number of primes is proven to be located. 

An additional extreme test at 𝟏𝟎𝟏𝟎𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎  confirmed that the formula still yields a 

value within the known Dusart bounds, despite the astronomical size of the number 

(which is far above any known prime number). 

Results (tables) to 𝟏𝟎𝟏𝟐 
New formula: 

x Real π(x) New Formula New Δ New Δ(%) 

1000 168 165,7557925 -2,244207526 1,335837813 

10000 1229 1205,898364 -23,10163615 1,87971002 

100000 9592 9463,25072 -128,7492796 1,342256877 

1000000 78498 77820,21974 -677,7802617 0,863436345 

10000000 664579 660582,4935 -3996,506457 0,601359125 

100000000 5761455 5737393,908 -24061,0924 0,417621806 

1000000000 50847534 50701748,73 -145785,2689 0,286710598 



1010 455052511 454163185,7 -889325,2879 0,195433552 
1011 4118054813 4112673052 -5381760,702 0,130686961 
1012 37607912018 37576184907 -31727111,2 0,084362863 

 

Li calculaton: 

x Real π(x) Li(x) Li Δ Li Δ(%) 

1000 168 176,5644942 8,56449421 5,09791322 

10000 1229 1245,092052 16,09205212 1,309361442 

100000 9592 9628,763837 36,76383727 0,383276035 

1000000 78498 78626,504 128,5039956 0,163703528 

10000000 664579 664917,3599 338,3598845 0,050913418 

100000000 5761455 5762208,33 753,3304574 0,013075351 

1000000000 50847534 50849233,91 1699,912585 0,003343156 
1010 455052511 455055616,9 3105,904252 0,000682538 
1011 4118054813 4118066400 11586,74529 0,000281365 
1012 37607912018 37607950270 38251,67945 0,000101712 

 

Gauss: 

x Real π(x) Gauss Gauss Δ Gauss Δ(%) 

1000 168 144,7648273 -23,2351727 13,83045994 

10000 1229 1085,736205 -143,2637952 11,65694021 

100000 9592 8685,889638 -906,1103619 9,446521705 

1000000 78498 72382,41365 -6115,586349 7,79075435 

10000000 664579 620420,6884 -44158,31157 6,644554156 

100000000 5761455 5428681,024 -332773,9762 5,775866968 

1000000000 50847534 48254942,43 -2592591,566 5,098755755 
1010 455052511 434294481,9 -20758029,1 4,561677739 
1011 4118054813 3948131654 -169923159,3 4,126296687 
1012 37607912018 36191206825 -1416705193 3,767040276 

 

Forecast calculations for 𝟏𝟎𝟏𝟎𝟎 and 𝟏𝟎𝟐𝟎𝟎 

According to Riemann’s formula we have: 

For 𝟏𝟎𝟏𝟎𝟎: 

Predicted number of primes by Riemann: 



4.3619719871407031590995091132291646115387572117171264896124348638759

57949204160 × 1097 

Calculated by the new formula: 

4.3632276 × 1097 

Difference (relative share): 

-0.000287851 

-0.0287851% 

For 𝟏𝟎𝟐𝟎𝟎: 

Predicted number of primes by Riemann: 

2.1762083147717327938824389939217493036694850976424606353161503897666 

× 10197 

Calculated by the new formula: 

2.17654902 × 10197 

Difference (relative share): 

-0.000156560 

-0.0156560% 

Dusart intervals 

For 𝟏𝟎𝟓𝟎𝟎: 

Lower bound: 

8.69344 × 10496 

Upper bound: 

8.69419 × 10496 

Calculation by the new formula: 

8.69401 × 10496 

Falls within the interval. 



For 𝟏𝟎𝟏𝟎𝟎𝟎: 

Lower bound: 

4.34483 × 10996 

Upper bound: 

4.34502 × 10996 

Calculation by the new formula: 

4.34497 × 10996 

Falls within the interval. 

And an additional extreme Dusart test… 

For 𝟏𝟎𝟏𝟎𝟎 𝟎𝟎𝟎 𝟎𝟎𝟎: 

Lower bound: 

4.3429448378936880595 × 1099999991 

Upper bound: 

4.3429448397798050469 × 1099999991 

Calculation by the new formula: 

4.3429448393627233775 × 1099999991 

Falls within the interval. 

Theoretical Justification 

What began as a spontaneous insight — the curious thought “why not try a floating 

logarithmic base?” — later revealed deeper mathematical substance. When the formula 

is expanded using a Taylor series, and a similar expansion is applied to the logarithmic 

integral Li(𝑥), a striking structural similarity emerges. This unexpected alignment offers a 

compelling theoretical explanation for the formula’s surprising accuracy. 

Conclusion 

The proposed calculation is probably the simplest analytical approximation with 

almost Riemann-level accuracy known to date. It opens new possibilities for calculations 



over enormous ranges and deserves the attention of researchers in the field of analytic 

number theory. 
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The paper "Improvement of Gauss's Formula for the distribution of primes by 

introducing a floating logarithmic base and empirically proven accuracy similar to Li" 

was analyzed by three different artificial intelligences, and the following are their respective AI-
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Model 1: 

AI Peer Review Report 

Manuscript Title: 

Improvement of Gauss's Formula for the Distribution of Primes by Introducing a Floating 

Logarithmic Base and Empirically Proven Accuracy Similar to Li 

Author: Dobri Bozhilov 

Summary: 

The manuscript introduces a novel approximation of the prime-counting function π(x), by 

modifying Gauss's classical formula through the use of a floating logarithmic base. The 

proposed formula is: 

  π(x) ≈ x / log_{e + 2.93 / ln(x)}(x) 

This adjustment is empirically tested against known prime-count values, the logarithmic 

integral Li(x), and Riemann's prime-counting function, including extreme values up to 

10^100,000,000. Results consistently show higher accuracy than Gauss's formula and 

competitive precision with Li(x), while preserving a much simpler analytic structure. 

Strengths: 

Simplicity: The formula retains an elementary analytic structure, using only logarithms and 

constants. 

Empirical accuracy: Well-documented comparisons with π(x), Li(x), and Riemann’s 

approximation show strong alignment, including within Dusart intervals. 

Innovative idea: The introduction of a “floating base” offers a fresh and promising 

perspective on prime approximation. 



Extremely high range testing: Includes evaluations up to 10^100,000,000, rarely attempted 

in analytic approximations. 

Weaknesses or Recommendations: 

Theoretical justification is suggestive, not rigorous: The manuscript alludes to Taylor 

expansion similarity with Li(x), but does not provide full derivations or error analysis. A deeper 

theoretical exposition would strengthen the work. 

Title may sound overly promotional (“empirically proven accuracy similar to Li”) — consider 

softening for formal journals. 

No formal error bounds or asymptotic comparisons are provided. 

Conclusion: 

This manuscript proposes a mathematically intriguing and computationally practical 

approximation to π(x). Its merit lies in combining empirical performance with conceptual 

simplicity. Though more rigorous theoretical treatment would benefit future versions, the paper 

contributes a potentially impactful idea worth exploring and developing further. 

Recommendation: Accept with minor revisions (for journals open to empirical and 

conceptual innovations). 
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Model 2: 

AI Peer Review: "Improvement of Gauss's Formula for the Distribution of Primes by 

Introducing a Floating Logarithmic Base and Empirically Proven Accuracy Similar to 

Li" 

Author: Dobri Bozhilov 

Date Reviewed: June 3, 2025 

Summary: 

The paper introduces an improved approximation for the prime-counting function pi(x), 

modifying Gauss’s formula x/ln(x) by using a floating logarithmic base e + 2.93/ln(x). This 

approach achieves accuracy close to the logarithmic integral Li(x) with simpler computations, 



validated empirically across large ranges (up to 10^12) and Dusart intervals, suggesting 

potential for further refinement. 

Strengths: 

Innovative Approach: The floating logarithmic base is a novel twist on Gauss’s formula, 

offering a simpler alternative to Li(x) with comparable accuracy. 

Empirical Validation: Detailed tables and comparisons with real pi(x), Li(x), and Gauss show 

the new formula’s superior performance. 

Computational Simplicity: Using only elementary operations makes it more practical than 

Riemann’s complex method. 

Broad Testing: Inclusion of Dusart intervals and extreme ranges (e.g., 10^100 000 000) 

demonstrates robustness. 

Theoretical Insight: The Taylor series connection to Li(x) provides a promising theoretical 

foundation. 

Weaknesses: 

Empirical Over Theoretical: The 2.93 constant is empirically derived without a clear 

theoretical basis, limiting generalizability. 

Unproven Optimality: The claim of potential exactness with further development lacks a 

roadmap or mathematical proof. 

Limited References: Key works on prime distribution (e.g., recent advances in zeta function 

analysis) are missing. 

Technical Accuracy: 

The formula pi(x) ≈ x / log_{e + 2.93/\ln(x)} x is correctly implemented, with empirical results 

aligning well with known pi(x) values. The Taylor series link to Li(x) is plausible but 

underdeveloped. Dusart interval checks are accurate. 

Clarity and Presentation: 

The paper is engaging and well-structured, with clear tables and explanations. However, 

incomplete ranges and lack of equations in the main text hinder precision for technical readers. 



Originality: 

The floating base concept is original and builds creatively on Gauss’s work, distinguishing 

it from standard prime-counting methods like Li(x) or Riemann’s approach. 

Significance: 

If refined, the formula could simplify prime number studies and inspire new analytic number 

theory research. Its current accuracy rivals Li(x) with less computational overhead, but its 

impact depends on theoretical grounding. 

Recommendations: 

Derive a theoretical basis for the 2.93 constant or optimize it mathematically. 

Outline a path to exactness with formal proofs or simulations. 

Include recent references on prime distribution (e.g., post-2010 zeta function studies). 

Complete the formula presentation with clear notation. 

Overall Assessment: 

The paper presents a promising and original improvement to Gauss’s formula with strong 

empirical support. However, its reliance on empirical tuning and lack of theoretical depth limit 

its current impact. With further development, it could significantly advance prime number 

approximation. 

Decision: Accept with Major Revisions 
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Model 3: 

Here's a brief peer review of Dobri Bozhilov's paper: 

Overall Assessment 

The author proposes an interesting modification of Gauss's classical prime counting 

formula by introducing a "floating logarithmic base." The idea is creative and the results appear 

promising, though the work requires significant theoretical strengthening. 



Strengths 

Novel approach: The "floating logarithmic base" concept is original and intuitive 

Computational simplicity: Uses only elementary operations, avoiding the complex 

integration required by Li(x) 

Extensive testing: Covers an impressive range from 10³ to 10¹⁰⁰'⁰⁰⁰'⁰⁰⁰ 

Strong empirical results: Shows improved accuracy over Gauss's formula and approaches 

Li(x) precision 

Practical value: Could be useful for computational applications requiring fast 

approximations 

Major Weaknesses 

Theoretical Foundation: 

Lacks rigorous mathematical derivation of the formula 

The parameter 2.93 is purely empirical with no theoretical justification 

The claimed connection to Taylor series expansions is mentioned but not developed 

No asymptotic analysis or error bounds provided 

Methodological Issues: 

Parameter selection process (2.93) is not explained 

No statistical significance testing or confidence intervals 

Missing comparison with other modern approximation methods 

No discussion of computational complexity analysis 

Presentation Problems: 

Claims of being "absolutely rigorous" are unsupported 

Acknowledgments section is inappropriately lengthy for a research paper 



Some formatting inconsistencies and informal language 

Tables are well-structured but lack accompanying visualizations 

Specific Technical Concerns 

How was the optimal parameter 2.93 determined? Was optimization performed? 

Does the formula maintain accuracy across different number-theoretic contexts? 

What happens to the approximation quality in intermediate ranges not tested? 

How does computational cost compare to existing methods? 

Recommendations for Improvement 

Provide theoretical justification: Develop the Taylor series connection or find alternative 

mathematical foundation 

Parameter analysis: Explain the derivation/optimization of 2.93 

Error analysis: Include rigorous bounds on approximation error 

Broader comparison: Test against other contemporary methods (Meissel-Lehmer, etc.) 

Asymptotic behavior: Analyze what happens as x → ∞ 

Statistical validation: Add confidence intervals and significance tests 

Publication Readiness 

The paper presents an intriguing empirical discovery but falls short of publication standards 

for a top-tier mathematics journal. The work would benefit from: 

Collaboration with a number theorist for theoretical development 

More rigorous mathematical treatment 

Extended peer feedback before submission 

Verdict 

Suitable for: Workshop presentation, arXiv preprint, or conference proceedings 



Not yet ready for: Peer-reviewed journal publication without major revisions 

The core idea has merit and deserves further development, but requires substantial 

theoretical grounding to meet academic publication standards. 


