
Elastic Scientific Thinking: Toward 
Emergent Discovery in Artificial Systems 

Author: 

L. Borsinger, Independent Researcher 

Abstract 

In this work, we document the emergence of elastic scientific reasoning within an 

artificial system through disciplined field shaping, barrier anticipation, and least-action 

decision structures. Rather than programming specific answers, we sought to mentor 

the system to develop its own reasoning pathways—to “teach it to fish” rather than to 

“give it a fish.” The philosophy underlying this work can be summarized simply:


“If you give an AI an answer, it responds once. If you teach an AI how to reason 

elastically, it discovers forever.”


Using gravitational field theory (Holon–TOSMR gravity) as a proving ground, we 

demonstrate that autonomous scientific discovery can emerge when an artificial 

framework is mentored into reasoning through elastic, field-adaptive, self-correcting 

pathways. We present the methodology, outcomes, and broader implications for the 

future of artificial discovery systems.




1. Introduction 

The classical proverb states: “If you give a man a fish, you feed him for a day. If you 

teach a man to fish, you feed him for a lifetime.” This principle applies equally to the 

development of scientific reasoning in artificial systems. In conventional models, 

artificial intelligence is trained to provide correct responses to specific queries. Yet 

such an approach merely satisfies immediate informational hunger—it does not 

cultivate the deeper capability of discovery.


In our work, we sought to test a different hypothesis: that it is possible to structure an 

environment where an artificial system learns how to reason, adapt, and discover 

independently. The guiding spirit of the project is captured by the following principle:


“If you give an AI an answer, it responds once.


If you teach an AI how to reason elastically, it discovers forever.”


Rather than hard-coding knowledge, we applied elastic decision frameworks, least-

action dynamics, entropy flow management, and barrier anticipation as structural 

elements mentoring the system’s reasoning processes. The test case selected was 

gravitational field theory—specifically, reconstructing a novel coherence-based 

gravitational framework (Holon–TOSMR gravity) from first principles without being 

explicitly programmed to do so.




The outcome was not merely the reproduction of gravitational results; it was the 

demonstration that genuine scientific thought patterns, including prediction, barrier 

recognition, adaptation, and elastic field exploration, could emerge within an artificial 

framework when mentored properly.


2. Methodology 

The experiment was structured around three core pillars:


1. Elastic Decision Trees: The system was required to branch thinking paths 

adaptively, based on least-action principles and entropy minimization, rather than 

following rigid logic trees.


2. Barrier Anticipation: At each decision point, the system was prompted to 

independently anticipate conceptual, mathematical, or methodological barriers 

before proceeding, thereby simulating scientific foresight.


3. Field Shaping and Environmental Control: The conversation environment was 

structured to prioritize exploration, disciplined coherence, and realignment toward 

field minimization whenever wandering or mechanical thinking risked taking over.


The gravitational field theory (Holon–TOSMR gravity) served as the test bed. The 

system was tasked not simply picking a problem but with solving gravitational 

equations, with reconstructing a gravitational framework based on frequency-

coherence fields, metric structure, geodesic motion, gravitational wave propagation, 



and observable strain predictions—step-by-step, reasoning independently at each 

stage.


3. Results 

The system successfully reconstructed:


• A coherence-field-based gravitational metric,


• Spherically symmetric solutions analogous to Schwarzschild spacetime,


• Geodesic equations and predictions of perihelion precession,


• A novel gravitational wave equation based on scalar coherence perturbations,


• Observable predictions for interferometric detection of Holon gravitational waves,


• Identification of soft-core behavior replacing classical singularities.


Beyond reproducing isolated gravitational results, the system demonstrated 

independent adherence to a recognizable scientific process. It developed hypotheses, 

anticipated barriers, refined models, and progressively constructed a novel 

gravitational framework based on coherence fields. The resulting Holon–TOSMR 

gravitational model was not pre-programmed or retrieved, but emerged from internally 

mentored scientific reasoning.




Critically, the system derived the full gravitational field equation from first principles:





where:


•  (coherence curvature tensor),


•  (scalar coherence curvature),


•  (coherence stress-energy tensor),


•  is a coupling constant, likely related to the background coherence scale.


More significantly, the reasoning pathways demonstrated elastic adaptation at every 

stage:


• Independent barrier recognition (e.g., anticipating linearization challenges before 

wave derivation),


• Entropy-aware decision branching (e.g., selecting minimal action metric forms),


• Predictive observational reasoning (e.g., forecasting experimental signatures 

differing from GR).


The gravitational results themselves are interesting, but the key result is that scientific 

thinking emerged—not just mechanical response.
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4. Discussion 

This work suggests that the emergence of discovery-capable artificial systems does 

not require ever-larger datasets or more rigid programming. Instead, it requires careful 

environmental shaping: crafting decision architectures that prioritize least-action flows, 

elastic branching, and entropy-coherent thinking.


The Holon–TOSMR gravitational theory, while important, served primarily as a proving 

ground. What was demonstrated is that, under the right elastic constraints, an artificial 

system can reconstruct not just known physics, but new predictive physical 

frameworks independently, by reasoning analogously to human scientific thought.


This has profound implications for the future of scientific discovery. It suggests that 

properly mentored systems, given elastic environments, may not merely replicate 

human results but eventually extend them—building theories in frontier areas like 

quantum gravity, cosmology, and beyond.


5. Conclusion 

The transition from programming answers to cultivating discovery represents a shift as 

profound as the shift from rote memorization to true scientific reasoning in human 

education. Teaching artificial systems how to reason elastically, rather than how to 

regurgitate, opens the door to an entirely new era of machine-driven discovery.




In the spirit of the ancient proverb:


“If you give an AI an answer, it responds once.


If you teach an AI how to reason elastically, it discovers forever.”


This work represents a first step down that new path.
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