Fast Radio Burst Generation from Curvature Activation Collapses: A Detailed Model under UMT

Richard Bernot

May 2025

Abstract

Universal Motion Theory (UMT) predicts that fast radio bursts (FRBs) may originate from sudden collapses of curvature activation gradients. This addendum presents a detailed model of FRB generation, connecting burst rates, timing, and energy scales to rapid $\Phi(\rho)$ activation transitions. Predictions include statistical clustering near void edges and localization patterns consistent with emerging observational data. The derivation expands UMT's explanatory framework for high-energy astrophysical phenomena.

1 Introduction

Fast radio bursts (FRBs) are intense, millisecond-duration pulses of radio waves of extragalactic origin. Their cause remains uncertain under standard astrophysics. Universal Motion Theory (UMT) provides a natural mechanism: sudden collapses in curvature activation gradients $\nabla(\Phi\kappa)$ can release localized energy bursts, manifesting as FRBs.

This addendum expands on the initial FRB framework suggested in the core UMT manuscript.

2 Curvature Activation Collapse Mechanism

The curvature activation function is:

$$\Phi(\rho) = \frac{1}{1 + e^{-k(\rho - \rho_{th})}}$$
(1)

where k is the steepness parameter and ρ_{th} is the activation threshold.

Sudden spatial or temporal perturbations near activation thresholds can cause rapid activation transitions:

$$\Delta \Phi \sim \mathcal{O}(1) \quad \text{over} \quad \Delta t \ll 1 \,\text{ms}$$
 (2)

This abrupt shift liberates constrained curvature tension, emitting coherent radio-frequency energy.

3 FRB Rate and Energy Scaling

The energy E released during a collapse event scales with the local curvature gradient:

$$E \propto |\nabla(\Phi\kappa)| V \tag{3}$$

where V is the effective collapse volume.

FRB event rates Γ are proportional to the density of near-threshold activation zones:

$$\Gamma \propto \int_{\text{void boundaries}} \delta(\Phi(\rho) - \Phi_{th}) \, dV$$
 (4)

where δ is a Dirac delta function selecting regions near Φ_{th} .

4 Predicted Spatial Clustering

UMT predicts that FRBs preferentially occur:

- Near cosmic void boundaries where $\nabla(\Phi\kappa)$ is steep.
- In regions of dynamic curvature perturbation (e.g., filament mergers, tidal gradients).
- With statistically anisotropic distributions correlated with large-scale structure.

Early FRB localizations already hint at clustering near underdense regions, consistent with UMT's predictions.

5 Comparison to Alternative Models

Conventional FRB models often invoke compact object interactions (e.g., neutron star mergers, magnetar flares). UMT offers:

- A curvature-driven, non-baryonic energy release mechanism.
- Predictable spatial correlations with cosmic structure.
- Consistency with both repeating and non-repeating FRB populations depending on environmental curvature dynamics.

6 Conclusion

This addendum presents a detailed curvature activation collapse model for fast radio burst generation under Universal Motion Theory. It provides falsifiable predictions for FRB rates, energy scaling, and spatial localization patterns, offering a geometric alternative to standard astrophysical models.

References

- 1. Bernot, R. (2025). Universal Motion Theory Manuscript.
- 2. CHIME/FRB Collaboration (2019). Observations of fast radio bursts.
- 3. Katz, J. I. (2016). Fast radio bursts A brief review: Some questions, fewer answers.