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Abstract

We develop a novel framework for modeling the structure of a point of time by intro-
ducing an asymmetric, structured collapse across a small time interval [τ−ϵ(s), τ+ϵ(s)].
This interval supports an intrinsically time-asymmetric, non-unitary, and stochastic
evolution that departs from conventional symmetric time translation. By treating the
collapse as a dynamic logical process, we embed it into operator algebras, stochastic
differential models, path integral formulations, sheaf cohomology, causal set theory,
information geometry, homotopy type theory, and temporal modal logic. This unified
approach offers a profound connection between time asymmetry, quantum measure-
ment, logical structure, and topological obstructions, providing a fresh perspective on
the emergence of reality from quantum possibilities.

1 Introduction

The nature of time and its asymmetry remain among the most profound questions in physics
and philosophy. Traditional models often treat time as a symmetric parameter governed by
unitary evolution, yet the process of quantum measurement and state collapse introduces an
intrinsic directionality—a logical arrow of time.

In this work, we propose a framework wherein the notion of a point of time itself is
endowed with internal structure. We introduce an infinitesimal, yet logically rich, time
interval [τ − ϵ(s), τ + ϵ(s)] centered around an event τ . Inside this micro-region, evolution
is characterized by asymmetry, stochasticity, and non-unitarity, breaking the time-reversal
invariance of standard physical theories.

Our central hypothesis is that structured collapse within ϵ(s) can be described not merely
as a singular event, but as a dynamic, logical, and geometric process. We explore this idea
across a wide range of mathematical frameworks—including operator algebras, stochastic
collapse models, path integral formulations, causal sets, sheaf cohomology, information ge-
ometry, homotopy type theory (HoTT), and temporal modal logic.

Each of these perspectives illuminates a different facet of collapse: logical obstruction,
geometrical curvature, stochastic noise, topological bifurcation, and irreversible logical evo-
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lution. Collectively, they point toward a deeper, unified picture where time asymmetry,
quantum measurement, and logical structure are inseparably intertwined.

2 Quantum Logical Framework for Structured Time

Traditional treatments of temporal evolution assume a continuous and classically defined
time parameter. In contrast, our approach models the infinitesimal time resolution ϵ(s)
as an object embedded within a non-classical logical structure. We propose that ϵ(s) can
be interpreted through the lens of quantum logic, leading to a framework in which the
structure of a point of time carries quantum logical indeterminacy and contextuality.

2.1 From Boolean to Quantum Logic

In classical logic, propositions about physical observables form a Boolean algebra. In quan-
tum mechanics, however, the algebra of propositions corresponds to the lattice of closed
subspaces of a Hilbert space—a structure that is inherently non-distributive. For instance,
the distributive law

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C) (1)

does not generally hold for quantum propositions.
We define a quantum logical lattice Lϵ for ϵ(s) as a set of propositions of the form:

Lϵ = {Pi(s) : ϵi(s) is an admissible resolution band ∆i} , (2)

where each Pi(s) refers to a distinct logical configuration of the resolution structure around
a time point.

2.2 Operator-Valued ϵ(s)

We elevate ϵ(s) to an operator ϵ̂(s) acting on a Hilbert space H:

ϵ̂(s)ψ(t) = ψ(t+ ϵ(s))− ψ(t− ϵ(s)). (3)

This operator captures the discontinuity or asymmetry of a state across an infinitesimal
neighborhood. In general, ϵ̂(s) does not commute with the Hamiltonian Ĥ:

[Ĥ, ϵ̂(s)] ̸= 0, (4)

which implies that ϵ(s) carries temporal information that is incompatible with energy con-
servation in the standard sense.

2.3 Modal and Contextual Interpretations

We can also interpret ϵ(s) using modal logic with quantum extensions. A modal proposition
like “It is possible that ϵ(s) = ϵα” can be symbolized as:

♢(ϵ(s) = ϵα). (5)
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Different logical contexts (or measurement configurations) lead to different realizations of
ϵ(s), reminiscent of contextuality in quantum mechanics. Thus, the structure of a point of
time becomes inherently observer-dependent and logically non-absolute.

2.4 Implications for δA(t)

We revisit the generalized discontinuity expression:

δA|t=τ = lim
s→0

[A(τ + ϵ(s))− A(τ − ϵ(s))] , (6)

where ϵ(s) now belongs to a quantum logical space. This introduces path-dependence and
logical non-commutativity into the discontinuity structure, allowing δA to encode quantum-
like uncertainty and history dependence.

2.5 Outlook

This quantum logical formulation of time structure introduces a radically new avenue for
reconciling temporal irreversibility, quantum measurement, and the algebraic foundation of
physics. Future work will aim to construct categorical models, topos-theoretic representa-
tions, and simulations of dynamical systems with logic-valued time resolutions.

3 Triadic Correspondence: Quantum Logic, Irreversible

Group Structure, and Asymmetric Temporal Dis-

tance

We propose that the nature of time—particularly when modeled as irreversible and topo-
logically compact—emerges from a triadic interplay between three conceptual layers: logic,
algebra, and geometry. The resolution function ϵ(s) is the unifying structure through which
these three layers are interrelated.

3.1 Logical Layer: Quantum Logic over ϵ(s)

In our framework, the selection or formulation of ϵ(s) at a given instant reflects a set of
quantum propositions. These belong to a non-distributive lattice Lϵ, much like the logical
structure of quantum mechanics. Here, each ϵ(s) carries logical weight: a proposition about
how the system resolves its own evolution across a structured time point.

3.2 Algebraic Layer: Group Structure of Irreversible Time

These logical selections map to operations in a transformation set Gϵ, a groupoid of time
translations that obey:

ϕs : A(t) 7→ A(t+ ϵ(s))− A(t− ϵ(s)). (7)
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Because these operations are not necessarily invertible, Gϵ departs from Lie group structure
and instead embodies the properties of a quasigroup or cyclic groupoid. Each ϕs embodies
a specific, logically-conditioned time evolution step.

3.3 Geometric Layer: Emergence of Asymmetric Distance

When ϕs acts on observables, it generates a directional measure of change:

dϵ(t1, t2) = |A(t2)− A(t1)| , t2 = t1 + ϵ(s). (8)

Because ϵ(s) is generally non-symmetric, we have dϵ(t1, t2) ̸= dϵ(t2, t1)—thus, an asymmetric
temporal distance arises. The irreversibility is embedded in this geometry, derived from the
underlying logical and algebraic layers.

3.4 Conceptual Diagram

Figure 1 illustrates the relationship among the three structures, mediated by ϵ(s):

Figure 1: Triadic relationship between logic, algebra, and geometry. Logical structures deter-
mine allowable transformations in the algebraic layer, which in turn give rise to asymmetric
metrics in the geometric layer. Asymmetric feedback into the logic layer closes the cycle.

4 Time Asymmetry in the Projection Lattice of Quan-

tum Logic

In conventional quantum mechanics, propositions about physical observables are represented
by projection operators acting on a Hilbert space H. These projection operators form an
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orthomodular lattice P(H), which serves as the logical backbone of quantum theory.

4.1 Projection Operators and Logical Structure

A projection operator P satisfies:
P = P † = P 2 (9)

Each such P corresponds to a yes/no proposition about the state of a quantum system.
The set P(H) forms a non-Boolean lattice where distributivity fails, encoding the essential
contextuality of quantum logic.

4.2 Symmetry and Group Action on the Lattice

The symmetry group acting on P(H) is the unitary group U(H) under conjugation:

P 7→ UPU †, U ∈ U(H) (10)

This action preserves orthogonality and logical structure, and defines an automorphism group
of the lattice:

Aut(P(H)) ∼= PU(H) =
U(H)

U(1)
(11)

Thus, group theory naturally governs the logical evolution in reversible quantum mechanics.

4.3 Irreversible Temporal Evolution on P(H)

To introduce time asymmetry, we relax the requirement of unitarity and define a semigroup
of transformations via:

Φt(P ) = V (t)PV (t)† (12)

where V (t) is not necessarily unitary, and satisfies:

V (t)V (t)† ̸= I (13)

This allows for irreversible or dissipative evolution, modeling phenomena like decoherence,
collapse, and entropy growth.

4.4 Semigroup and Asymmetric Time

The transformations {V (t)}t≥0 form a semigroup:

V (t) ◦ V (s) = V (t+ s), t, s ≥ 0 (14)

but generally lack inverses:
V (t)−1 /∈ {V (s)} (15)

Thus, the logical evolution Ft(P ) = V (t)PV (t)† defines a time-asymmetric flow on the space
of quantum propositions.
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4.5 Asymmetric Distance on Logical Space

We can define a directional distance between propositions P and Q under the action of Φt:

d(P,Q) = ∥V (t)PV (t)† −Q∥ (16)

This distance is generally not symmetric:

d(P,Q) ̸= d(Q,P ) (17)

and encodes a directional arrow of time in the logical geometry of the system.
The projection lattice of quantum logic, typically studied in symmetric unitary contexts,

can accommodate temporal asymmetry through the use of non-unitary, semigroup-based dy-
namics. This formalism provides a powerful bridge between algebraic logic, time asymmetry,
and geometric structure in foundational physics.

5 Time Asymmetry in the Projection Lattice of Quan-

tum Logic

In conventional quantum mechanics, propositions about physical observables are represented
by projection operators acting on a Hilbert space H. These projection operators form an
orthomodular lattice P(H), which serves as the logical backbone of quantum theory.

5.1 Projection Operators and Logical Structure

A projection operator P satisfies:
P = P † = P 2 (18)

Each such P corresponds to a yes/no proposition about the state of a quantum system.
The set P(H) forms a non-Boolean lattice where distributivity fails, encoding the essential
contextuality of quantum logic.

5.2 Symmetry and Group Action on the Lattice

The symmetry group acting on P(H) is the unitary group U(H) under conjugation:

P 7→ UPU †, U ∈ U(H) (19)

This action preserves orthogonality and logical structure, and defines an automorphism group
of the lattice:

Aut(P(H)) ∼= PU(H) =
U(H)

U(1)
(20)

Thus, group theory naturally governs the logical evolution in reversible quantum mechanics.
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5.3 Irreversible Temporal Evolution on P(H)

To introduce time asymmetry, we relax the requirement of unitarity and define a semigroup
of transformations via:

Φt(P ) = V (t)PV (t)† (21)

where V (t) is not necessarily unitary, and satisfies:

V (t)V (t)† ̸= I (22)

This allows for irreversible or dissipative evolution, modeling phenomena like decoherence,
collapse, and entropy growth.

5.4 Semigroup and Asymmetric Time

The transformations {V (t)}t≥0 form a semigroup:

V (t) ◦ V (s) = V (t+ s), t, s ≥ 0 (23)

but generally lack inverses:
V (t)−1 /∈ {V (s)} (24)

Thus, the logical evolution Ft(P ) = V (t)PV (t)† defines a time-asymmetric flow on the space
of quantum propositions.

5.5 Asymmetric Distance on Logical Space

We can define a directional distance between propositions P and Q under the action of Φt:

d(P,Q) = ∥V (t)PV (t)† −Q∥ (25)

This distance is generally not symmetric:

d(P,Q) ̸= d(Q,P ) (26)

and encodes a directional arrow of time in the logical geometry of the system.
The projection lattice of quantum logic, typically studied in symmetric unitary contexts,

can accommodate temporal asymmetry through the use of non-unitary, semigroup-based dy-
namics. This formalism provides a powerful bridge between algebraic logic, time asymmetry,
and geometric structure in foundational physics.

6 Foundational Theorems of Asymmetric Temporal Quan-

tum Logic

This section formalizes key mathematical statements underpinning the proposed framework
of structured, irreversible time, asymmetric resolution, and consciousness-driven projection
in quantum logic.
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6.1 Theorem 1: Structured Collapse Theorem

Statement. Let A(t) be a quantum observable and ϵ(s) a smooth asymmetric resolution
function. If a collapse of the quantum state occurs at time τ , then the projection P inducing
the collapse acts over the interval [τ − ϵ(s), τ + ϵ(s)], and the effective change is given by:

δA|t=τ = lim
s→0

[A(τ + ϵ(s))− A(τ − ϵ(s))] . (27)

The collapse is irreversible if ϵ(s) ̸= −ϵ(−s).

6.2 Theorem 2: Asymmetric Time Evolution Operator Theorem

Statement. Let V (t) be a family of bounded operators on H satisfying:

V (t) ◦ V (s) = V (t+ s), V (0) = I, t, s ≥ 0. (28)

Then {V (t)} forms a semigroup, and the evolution of projection operators,

Φt(P ) = V (t)PV (t)†, (29)

defines a time-asymmetric flow on the lattice P(H) if V (t) is non-unitary.

6.3 Theorem 3: Asymmetric Metric on Projection Space

Statement. Let P,Q ∈ P(H), and define the distance function:

dϵ(P,Q) = ∥V (ϵ(s))PV †(ϵ(s))−Q∥. (30)

Then, in general,
dϵ(P,Q) ̸= dϵ(Q,P ), (31)

so the space of quantum propositions carries a direction-dependent (asymmetric) metric.

6.4 Theorem 4: Conscious Logical Non-Invertibility Theorem

Statement. If a conscious observer applies a projection P ∈ P(H) with support over an
asymmetric interval defined by ϵ(s), then for any subsequent projection Q,

Φ−1
ϵ(s)(Q) /∈ P(H) (32)

in general, and logical reversibility fails.

6.5 Theorem 5: Asymmetric Logical Flow Defines Temporal Ori-
entation

Statement. Let the evolution of projections P 7→ Ft(P ) be governed by an asymmetric
resolution function ϵ(s). Then the directionality of this logical transformation defines a
temporal orientation satisfying:

Ft(P ) ̸= F−1
−t (P ), (33)

demonstrating an emergent arrow of time within quantum logic.
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7 Global Logical Complementarity and Conscious Col-

lapse

In this section, we explore the idea that a single conscious collapse event, localized over a
structured time interval ϵ(s), acts as a logical complement to all other projection operations
performed throughout the entire temporal cycle. This perspective unifies the cyclic topology
of time, quantum logic, and the algebra of consciousness.

7.1 Theorem 6: Global Complementarity of Collapse

Statement. Let:

• T = [0, T ] be a compact, cyclic temporal domain.

• ϵ(s) define the structured resolution interval around a conscious collapse at τ ∈ T .

• Pτ ∈ P(H) be the projection operator corresponding to collapse over [τ−ϵ(s), τ+ϵ(s)].

• Rτ = {Pt ∈ P(H) | t /∈ [τ − ϵ(s), τ + ϵ(s)]} be the set of all other projections within
the cycle.

Then, under conditions of orthogonality and completeness:

Pτ = ¬

( ∨
Pt∈Rτ

Pt

)
or Pτ +

∑
t/∈[τ−ϵ(s),τ+ϵ(s)]

Pt = I (34)

7.2 Interpretation

This formulation implies that the collapse event does not exist in isolation. Instead, it
logically negates the collection of all other projections in the time cycle. Such a collapse is
global in informational scope while remaining locally instantiated in temporal structure.

7.3 Geometric Illustration

Figure 2 illustrates this complementarity. The red arc represents the ϵ(s)-structured col-
lapse region, and the surrounding blue arc depicts its logical complement — the rest of the
measurement cycle.

This theorem encodes a conservation principle at the logical level. Consciousness does
not merely localize an event — it also establishes a complementarity that resolves the entire
structure of potential measurement across cyclic time.

8 Observer Compatibility and Multi-Conscious Col-

lapse

In this section, we extend the framework of structured conscious collapse to multiple ob-
servers. We investigate the conditions under which the projection operators applied by dif-
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Figure 2: Logical complementarity of collapse over S1 time. The red region represents the
ϵ(s)-structured conscious collapse, while the blue region represents the logical complement
— the rest of the cycle’s projections.

ferent observers can be considered compatible, ensuring consistent collapse outcomes across
conscious perspectives.

8.1 Motivation

A longstanding puzzle in quantum foundations is the consistency of observations between
independent observers, particularly in paradoxes like Schrödinger’s cat and the Wigner’s
friend scenario. If two observers, say Alice and Bob, monitor the same quantum system
at overlapping but non-identical temporal resolutions ϵA(s) and ϵB(s), they must arrive at
consistent collapse results:

• Alice cannot observe the cat to be alive while Bob observes it dead.

• Their projections must act on intersecting logical subspaces of the Hilbert space.

This consistency is not imposed by standard unitary evolution, but rather by a new form of
projection-based logical agreement.

8.2 Theorem 7: Observer Compatibility of Collapse

Statement. Let:

• O = {Oi}ni=1 be a set of n observers,

• Pi ∈ P(H) be the projection operator applied by Oi over a structured interval [τi −
ϵi(s), τi + ϵi(s)],
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• Then the projections are collapse-compatible if:

∀i, j : [Pi, Pj] = 0 and PiPj = Pshared. (35)

Then, the outcome of wave function collapse is consistent across all observers. Violation of
these conditions implies no well-defined global collapse.

8.3 Geometric Interpretation

Each observer defines a structured collapse region in S1 time via ϵi(s). Compatibility implies
that the overlapping projections:

• Commute algebraically,

• Resolve the system into the same subspace.

In this way, the observers’ structured awareness is linked through projection-theoretic con-
sistency.

8.4 Philosophical Implication

This condition captures a “shared field of consciousness” model: awareness is distributed, yet
logically convergent. It also echoes relational quantum mechanics and participatory realism
as discussed by Rovelli and Fuchs, respectively [22, 13].

9 Storage of Observer Projection Memory Across Time

Cycles

An essential feature of cyclic time models is the recurrence of physical and informational
states. Within our framework, if an observer experiences the same sequence of conscious
collapses in each temporal cycle, then the full set of projection operators applied by the
observer must be stored or encoded. This section explores the formalism and interpretation
of such a memory structure.

9.1 Definition: Projection Operator Field (POF)

Let S1 be the compactified time manifold, and let P(H) be the lattice of projection operators
on a Hilbert space H. Define the Projection Operator Field for observer O as:

PO : S1 −→ P(H), (36)

where PO(t) specifies the projection applied by the observer at time t, structured over an
interval governed by ϵO(s). This field encodes the observer’s collapse behavior across the
entire time cycle.
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9.2 Theorem 8: Recurrence of Projection Memory

Statement. Let PO : S1 → P(H) be an observer’s projection field over cyclic time. If
collapse outcomes are identical across all cycles, then:

∀n ∈ Z, P(n)
O (t) = P(0)

O (t), modulo S1, (37)

where P(n)
O denotes the projection pattern in the n-th cycle. This recurrence implies the

existence of a memory structure preserving the pattern across time.

9.3 Interpretations of Projection Memory

• Internal Memory Hypothesis: PO(t) is stored in the observer’s quantum cognitive
state. This memory is revived or re-instantiated in each cycle.

• Boundary Condition Hypothesis: The projection pattern is encoded in the initial
(or final) boundary data of the universe, and reappears through recurrence.

• Logical Attractor Hypothesis: The pattern PO(t) is a fixed point of a dynamical
system on P(H), resulting in self-consistent projection evolution.

The recurrence of conscious collapse across cycles implies a mechanism of informational
storage. Whether this mechanism is internal, external, or dynamic, it demonstrates the
necessity of an underlying architecture — a logical memory— by which an observer maintains
projection consistency over S1 time.

10 Quantum Measurement at and Below the Planck

Scale

The Planck scale represents the domain where classical concepts of space, time, and energy
cease to be valid, and quantum gravitational effects dominate. In this regime, even the
concept of a quantum measurement becomes highly nontrivial. This section investigates the
foundational consequences for quantum collapse and projection logic when considered at or
below the Planck length.

10.1 Fundamental Limits of Localization

The Planck length lP ∼ 1.6×10−35 m and Planck time tP ∼ 5.4×10−44 s define natural lower
bounds on meaningful localization. Attempts to resolve spatial positions to scales smaller
than lP require energies that, according to general relativity, would create microscopic black
holes, thereby destroying the measurement configuration itself.

This is encapsulated in the Generalized Uncertainty Principle (GUP):

∆x ≳
ℏ
∆p

+ αl2P
∆p

ℏ
(38)

where α is a positive constant. The term proportional to l2P introduces a lower bound on ∆x
that prohibits arbitrarily fine resolution.
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10.2 Collapse and Spacetime Indeterminacy

At the Planck scale, the quantum state may no longer reside in a fixed background space-
time. Instead, superpositions of different geometries, topologies, or even causal orders may
occur. Consequently, the collapse of the wavefunction—traditionally defined by a projection
operator—must now account for background spacetime being part of the quantum system.

10.3 Minimal Logical Resolution

Within the ϵ(s)-based framework introduced in this paper, we propose a natural cutoff:

ϵ(s) ≥ ϵmin ∼ lP (39)

to ensure that no projection occurs at a resolution finer than Planck scale. This introduces
a minimal resolution interval, consistent with the idea of quantized geometry.

10.4 Breakdown of Standard Projection Logic

The standard projection lattice P(H) assumes orthomodularity and a background Hilbert
space with well-defined time evolution. Below the Planck scale:

• Projection operators may no longer commute due to metric fluctuations.

• Logical consistency may require sheaf-theoretic or categorical reformulations.

• Time asymmetry embedded in ϵ(s) may fluctuate or become operator-valued.

10.5 Toward a New Measurement Framework

To accommodate the collapse process at the Planck scale, future theories may incorporate:

• Quantum histories or process ontologies instead of static projections.

• Stochastic or non-linear modifications to the projection process.

• Interactions between logical structures and topological fluctuations.

11 Quantum Measurement and the Planck Time

The Planck scale represents the domain where classical concepts of space, time, and energy
cease to be valid, and quantum gravitational effects dominate. In this regime, even the
concept of a quantum measurement becomes highly nontrivial. This section investigates the
foundational consequences for quantum collapse and projection logic when considered at or
below the Planck time.

13



11.1 Fundamental Limits of Temporal Resolution

The Planck time tP ∼ 5.39 × 10−44 s defines the smallest meaningful temporal interval in
nature. Attempts to resolve temporal positions to scales smaller than tP would require
energies that, according to general relativity, would induce extreme gravitational fluctua-
tions—effectively making precise timing measurements physically meaningless.

This is encapsulated in a time-based formulation of the Generalized Uncertainty Principle
(GUP):

∆t ≳
ℏ

∆E
+ αt2P

∆E

ℏ
(40)

where α is a dimensionless constant. The term proportional to t2P introduces a lower bound
on ∆t that prohibits arbitrarily fine temporal resolution.

11.2 Collapse and Temporal Indeterminacy

At the Planck time scale, the quantum state may no longer evolve in a fixed temporal back-
ground. Instead, quantum fluctuations of spacetime itself—including causal structure—may
render the concept of sequential collapse events ill-defined. Thus, the projection process
must incorporate quantum time uncertainties.

11.3 Minimal Logical Resolution

Within the ϵ(s)-based framework introduced in this paper, we propose a natural lower bound:

ϵ(s) ≥ ϵmin ∼ tP (41)

to ensure that no collapse occurs at a resolution finer than Planck time. This constraint
harmonizes logical structure with quantum gravitational limits.

11.4 Breakdown of Standard Projection Logic

The standard projection lattice P(H) assumes orthomodularity and a fixed Hilbert space
evolution. At or below the Planck time scale:

• Projection operators may no longer commute due to time metric fluctuations.

• Logical structure may require non-Boolean or categorical generalizations.

• Time asymmetry in ϵ(s) could itself become operator-valued or stochastic.

11.5 Toward a New Measurement Framework

To accommodate the collapse process at the Planck time scale, new measurement models
may involve:

• Quantum histories or path integrals with non-fixed time parameters.

• Nonlinear or stochastic projections emerging from quantum gravitational constraints.

• Logical frameworks that evolve with temporally fluctuating causal structure.
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12 EPR Entanglement and Structured Collapse: Res-

olution via ϵ(s)

The Einstein–Podolsky–Rosen (EPR) paradox poses a challenge to conventional quantum
mechanics by highlighting apparent nonlocal correlations between spatially separated mea-
surements. In the standard formulation, two entangled particles are measured by indepen-
dent observers, and their outcomes are instantaneously correlated despite spacelike separa-
tion. This leads to paradoxes under assumptions of locality and realism.

We now reinterpret the EPR setup using the time-asymmetric, structured-resolution
framework introduced in this work. In particular, we embed the EPR scenario within Equa-
tion (12), redefining collapse as a projection over asymmetric resolution windows ϵ(s).

12.1 Nonlocal Collapse via Structured Resolution

Consider two observers, Alice and Bob, measuring entangled subsystems A and B respec-
tively. Each observer performs a measurement over a time interval:

[τA − ϵA(s), τA + ϵA(s)] and [τB − ϵB(s), τB + ϵB(s)].

The instantaneous change in each system is:

δA|t=τA = lim
ϵ→0

[A(τA + ϵ)− A(τA − ϵ)] = −
∫
[0,T ]\[τA−ϵ,τA+ϵ]

A1(t) dt (42)

δB|t=τB = lim
ϵ→0

[B(τB + ϵ)−B(τB − ϵ)] = −
∫
[0,T ]\[τB−ϵ,τB+ϵ]

B1(t) dt (43)

If A and B are entangled, we propose the following nonlocal constraint:

δA|t=τA + δB|t=τB = 0, (44)

expressing the correlation as a conservation-like condition in structured time.

12.2 Unified Collapse of the Entangled State

Let ρAB(t) denote the joint density operator of the entangled system. We reinterpret the
collapse not as separate events at Alice and Bob’s sites, but as a single projection operator:

PAB = PA ⊗ PB,

acting nonlocally over a shared logical resolution window.
Then, the change in the entangled state becomes:

δρAB|t=τ = lim
ϵ→0

[ρAB(τ + ϵ)− ρAB(τ − ϵ)] = −
∫
[0,T ]\[τ−ϵ,τ+ϵ]

ρ′AB(t) dt, (45)

where τ lies within both observers’ resolution intervals. This avoids the paradox of sig-
nal transmission between measurements by embedding the entangled projection within a
structured, temporally extended operator.
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12.3 Logical Complementarity and Observer Correlation

The collapse window ϵ(s) is now responsible for defining the logical entanglement between
projections:

• If PA collapses a spin-up outcome for Alice,

• Then PB must project a spin-down outcome for Bob, in a way consistent with the total
wavefunction.

This implies that the projections must satisfy:

PABρABPAB = ρAB,collapsed,

but this projection acts over a logical region encompassing both measurement sites and time
intervals.

In this model, EPR correlations emerge not from spatial signaling, but from joint projec-
tions applied over temporally structured resolution windows. The paradox of instantaneous
influence vanishes: collapse is neither sent nor received, but logically embedded across time
and space.

Figure 3: Schematic representation of EPR measurement collapse using structured time
windows ϵA(s) and ϵB(s). A joint projection PA⊗PB collapses the entangled state nonlocally
over a logical span.

13 Bridging Bell’s Hidden Variable Integrals and Time-

Structured Collapse

Bell’s theorem formulates constraints on local hidden variable theories using integrals over
ontological variables λ, whereas our structured collapse equation (Eq. 12) uses integrals
over time excluding a small window ϵ(s) around the collapse point. This section draws an
interpretive and formal bridge between these two formulations.
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13.1 Integral in Bell’s Theorem

In the CHSH formulation of Bell’s theorem, the expected correlation between outcomes of
two entangled measurements is given by:

E(A,B) =

∫
dλ ρ(λ) A(λ) B(λ), (46)

where λ represents hidden variables, ρ(λ) is a probability distribution over them, and
A(λ), B(λ) ∈ {±1} are deterministic functions representing the measurement results.

This integral captures the statistical average over an ensemble of hidden variables as-
sumed to exist but inaccessible to the observer.

13.2 Integral in Equation (12)

In our time-structured collapse formalism, the change in an observable A(t) at time τ is
given by:

δA|t=τ = lim
ϵ→0

[A(τ + ϵ)− A(τ − ϵ)] = −
(∫ τ−ϵ

0

A1(t) dt+

∫ T

τ+ϵ

A1(t) dt

)
, (47)

where A1(t) = dA
dt

is the time derivative, and the interval [τ − ϵ, τ + ϵ] is excluded due to
collapse.

This integral excludes the region where collapse occurs, reflecting the logical ”gap” during
measurement.

13.3 Analogy Between λ and t

We reinterpret time t as a hidden configuration variable:

λ↔ t.

Under this mapping:

• Bell’s λ represents ontic ignorance.

• Our t ∈ [0, T ] \ [τ − ϵ, τ + ϵ] represents logical exclusion due to collapse.

• Bell’s ensemble is statistical; ours is dynamical.

We may write, in analogy:

δA(τ) = −
∫
λ/∈ϵ(s)

A1(λ) dλ, (48)

indicating that the observable change is determined by the ensemble of non-collapsing con-
figurations.
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13.4 Interpretive Table

Feature Bell’s Theorem Structured Collapse (Eq. 12)
Integration domain λ (hidden variables) t ∈ [0, T ] \ [τ − ϵ, τ + ϵ]

Purpose Statistical averaging Logical exclusion
Ignorance type Ontological Temporal/logical

Collapse modeling Implicit Explicit
Projection scope Global average Local subtraction

Bell’s integral over hidden variables and our structured-time integral are conceptually
analogous: both represent partial knowledge or exclusion. In Bell’s case, it’s epistemic;
in our case, it’s operational. This bridge suggests that the logical and temporal structure
of measurement could underlie the statistical predictions traditionally derived from hidden
variable models.

Figure 4: Conceptual bridge between Bell’s hidden variable integral and time-structured
collapse. The Bell integral spans all hidden variables λ, whereas the structured collapse
excludes a resolution window ϵ(s) from the time domain. Both represent exclusion-based
observable logic.

14 Measurement Series Within the Collapse Interval:

Zeno Logic and Temporal Saturation

In our structured collapse framework, the time interval [τ − ϵ, τ + ϵ] is traditionally treated
as a logical exclusion zone where wavefunction collapse occurs. However, it is intriguing to
ask: what happens if we perform a rapid series of quantum measurements within this very
interval?

This section explores the effects of repeated measurement operations within the collapse
region, drawing from the quantum Zeno effect, projection logic, and time-asymmetric dy-
namics.
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14.1 Collapse Zone as Logical Singularity

Equation (12) models the change in observable A(t) at the collapse point τ as:

δA|t=τ = −
(∫ τ−ϵ

0

A1(t) dt+

∫ T

τ+ϵ

A1(t) dt

)
(49)

where A1(t) is the derivative
dA
dt

and the collapse zone [τ−ϵ, τ+ϵ] is excluded from dynamics.

14.2 Quantum Zeno within the Collapse Window

Let us now consider performing N measurements within [τ − ϵ, τ + ϵ], using projection
operators {Pn}Nn=1 at times {tn}.

The effective evolution of the observable is governed by the limiting composition:

Peff = lim
N→∞

PNPN−1 · · ·P1 (50)

This may yield:

• A fixed-point projection (Zeno freezing),

• A smeared collapse across the interval,

• Or a singular operator if logical contradictions arise.

14.3 Modified Equation (12) with Zeno Collapse

We now reinterpret Equation (12) to include the inner collapse interval as a domain of active
measurement dynamics:

δA|t=τ = −
(∫ τ−ϵ

0

A1(t) dt +

∫ τ+ϵ

τ−ϵ

∆P (t)[A(t)] dt +

∫ T

τ+ϵ

A1(t) dt

)
(51)

where:
∆P (t)[A(t)] = P (t)A(t)P (t)− A(t)

captures the change induced by instantaneous projections applied continuously over time.

14.4 Interpretation

• The collapse zone becomes a logical field, not a singular point.

• Projection dynamics encode micro-collapses and their interference.

• This framework may generalize to stochastic collapse models and continuous measure-
ment theory.
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Figure 5: Rapid sequence of projections Pn within the structured collapse window [−ϵ, ϵ].
As N → ∞, this leads to a Zeno-like saturation of measurement, modifying the effective
collapse dynamics and logical structure.

15 Kochen–Specker Contextuality and Structured Col-

lapse

While Bell’s theorem rules out local hidden variable theories, the Kochen–Specker (KS) the-
orem eliminates a broader class of models: non-contextual hidden variable theories. This
section explores the implications of KS-type contextuality within our structured time for-
malism using ϵ(s).

15.1 Kochen–Specker Theorem

The KS theorem asserts that in Hilbert spaces of dimension three or greater, it is impossible
to assign definite values to all projection operators in a way that:

• Preserves functional relationships (e.g., orthogonality),

• Assigns values independently of the measurement context.

In essence, this implies that the outcome of a measurement depends on what other
compatible observables are being measured — a violation of non-contextuality.

15.2 Contextuality Inequality: The KCBS Bound

Consider five projective measurements {Ai}5i=1 arranged in a cyclic fashion such that Ai is
compatible with Ai+1, and each observable has outcomes ±1. For a non-contextual hidden
variable model, the following inequality holds:

5∑
i=1

⟨AiAi+1⟩ ≥ −3. (52)

Quantum mechanics, however, allows values as low as −5 cos
(
π
5

)
≈ −3.94, demonstrating

contextuality.
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15.3 Structured Collapse and Contextuality

In our framework, projection operators are not applied instantaneously but over a finite
asymmetric window [τ−ϵ(s), τ+ϵ(s)]. Suppose each measurement Ai is implemented during
its own ϵi(s) interval. Then:

• Contextuality can be interpreted as interference between overlapping collapse intervals,

• The logical assignment of values must depend on the collapse context defined by ϵ(s),

• Projection operators cannot be assigned non-overlapping truth values independent of
one another.

15.4 Collapse-Adjusted KS Structure

We propose that contextuality arises naturally when projections occur in temporally over-
lapping or logically entangled windows:

ϵi(s) ∩ ϵj(s) ̸= ∅ ⇒ contextual influence

The KS theorem is then realized not as a static assignment contradiction, but as a
dynamic outcome of temporally structured measurement logic.

Figure 6: Overlapping structured collapse intervals ϵi(s) corresponding to five projective
measurements. Red arrows highlight regions of contextual influence where logical indepen-
dence of measurement outcomes breaks down.

16 Mermin–Peres Square and Contextuality Contra-

diction

The Mermin–Peres square is a striking illustration of the Kochen–Specker theorem. It pro-
vides a compact logical contradiction that arises when one attempts to assign non-contextual
definite values to commuting quantum observables in a two-qubit system.
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16.1 Structure of the Mermin–Peres Square

Consider the following 3×3 array of observables:

σx ⊗ I I ⊗ σx σx ⊗ σx
σy ⊗ I I ⊗ σy σy ⊗ σy
σx ⊗ σy σy ⊗ σx σz ⊗ σz

Each row and each column contains commuting observables, so their product is well-
defined. The products are:

• Each row multiplies to the identity operator +I.

• First two columns also yield +I.

• The last column yields −I.

16.2 Logical Contradiction

Suppose one tries to assign predetermined eigenvalues ±1 to each observable, consistent
with:

• Functional relations (products),

• Independence from context (non-contextuality).

Then the overall parity becomes inconsistent:

(+1)3 = +1 (rows) vs. (+1)2 · (−1) = −1 (columns)

This contradiction implies that no non-contextual hidden variable model can consistently
assign values to these observables.

17 Structured Collapse Interpretation of the Mermin–Peres

Contradiction

In traditional quantum logic, the Mermin–Peres square demonstrates the impossibility of
assigning consistent, non-contextual hidden variables to a set of observables arranged in a
3×3 grid. In our framework, this contradiction is not merely logical, but arises dynamically
from the temporal structure of collapse.

17.1 Collapse as Time-Structured Projection

Each observable Oij in the Mermin–Peres square corresponds to a projection operator Pij(t),
acting over a structured time interval:

Pij active over [τij − ϵij(s), τij + ϵij(s)]

Measurement context is defined by the set of observables whose projection intervals over-
lap. Hence:
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• A “row” context corresponds to overlapping time intervals of three row-aligned oper-
ators.

• A “column” context corresponds to overlapping time intervals of three column-aligned
operators.

17.2 Contextual Contradiction via Temporal Overlaps

The standard logical contradiction of the Mermin–Peres square is:

• Each row of operators has a product that yields the identity: +I.

• Two columns do the same, but the final column yields −I.

Under non-contextual value assignment, this is inconsistent.
In our structured framework, the contradiction is not abstract but arises due to temporal

overlap of incompatible contexts:

ϵij(s) ∩ ϵi′j′(s) ̸= ∅ for contextually incompatible rows and columns.

17.3 Time-Based Contextuality

We reinterpret contextuality as the impossibility of assigning projection values to overlapping
collapse windows such that:

3∏
j=1

vij(t) = +1 for rows,
3∏

i=1

vij(t) =

{
+1, j ∈ {1, 2}
−1, j = 3

Here vij(t) is the eigenvalue assigned during the interval ϵij(s). The contradiction emerges
when the time structure forces conflicting parities due to overlapping projections.

The Mermin–Peres square exemplifies contextuality as a failure of non-contextual logic.
In our model, this failure emerges from the dynamic evolution and temporal interference
of projection operators. Context is encoded in time, and contradictions are resolved as
structurally inevitable — not merely logically paradoxical.

18 Defining the Structure of a Point of Time via ϵ(s)-

Resolution

In conventional physics, a point of time is treated as a zero-dimensional coordinate. In
our framework, we aim to enrich this notion by embedding logical, asymmetrical, and
measurement-sensitive structure into the infinitesimal time interval [τ − ϵ(s), τ + ϵ(s)]. This
section proposes a new definition for the structure of a point of time using ϵ(s) as a resolution
function.
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18.1 Collapse-Induced Modification of Observables

We begin by introducing a distributed projection operator P (t) within the ϵ-interval. The
change in an observable A(t) due to collapse is given by:

δA(τ) = lim
ϵ→0

∫ τ+ϵ

τ−ϵ

(P (t)A(t)P (t)− A(t)) dt. (53)

This defines the infinitesimal logical jump as a structured, resolution-dependent process.

18.2 Collapse Density Function

Let ρc(t) be the collapse density function, normalized over the interval:∫ τ+ϵ(s)

τ−ϵ(s)

ρc(t) dt = 1. (54)

As ϵ(s) → 0, ρc(t) becomes sharply peaked but retains structure, unlike the delta function.
A point in time is thus modeled as the limit of a normalized distribution of collapse effects.

18.3 Asymmetry at the Infinitesimal Level

We define the asymmetric projection behavior:

P (t) =

{
P−(t), t < τ

P+(t), t > τ
(55)

with P−(t) ̸= P+(t), encoding irreversibility. This leads to an operator-valued asymmetry
embedded directly into the time point’s neighborhood.

18.4 Projection Lattice Near a Time Point

Define the set of all projections within the ϵ-interval as:

Pϵ = {P (t) | t ∈ [τ − ϵ, τ + ϵ]}. (56)

Then the instantaneous projection lattice becomes:

Lτ = lim
ϵ→0

Pϵ. (57)

This lattice encodes the logical and quantum properties concentrated at the time point τ .
We propose that a point in time is not merely a geometric abstraction but a well-defined

limit of projection logic and collapse structure. The function ϵ(s) serves not only as a
resolution scale but also as a bridge between temporal and logical granularity.
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19 Path Integrals Over Structured Collapse Intervals:

The ϵ(s)-Region as a Quantum Transition Layer

In the conventional Feynman formalism, quantum transition amplitudes are obtained by
summing over all possible paths between fixed endpoints. Time is treated symmetrically,
and dynamics are governed by unitary evolution. In this section, we extend the notion of the
path integral to a structured, infinitesimal collapse interval [τ − ϵ(s), τ + ϵ(s)], incorporating
asymmetry, projection logic, and collapse constraints.

19.1 Conventional Path Integral Formulation

The standard transition amplitude between xi at ti and xf at tf is given by:

⟨xf , tf |xi, ti⟩ =
∫

D[x(t)] exp

(
i

ℏ

∫ tf

ti

L(x, ẋ) dt

)
. (58)

This formulation assumes unitary, symmetric time evolution.

19.2 Collapse-Window Path Integral

We now restrict the time interval to the structured collapse window [τ − ϵ(s), τ + ϵ(s)], and
define a localized path integral:

Z[ϵ(s)] =

∫
Cϵ
D[x(t)] exp

(
i

ℏ

∫ τ+ϵ

τ−ϵ

L(x, ẋ) dt

)
, (59)

where Cϵ is the class of paths defined over the interval influenced by collapse.

19.3 Collapse-Weighted Path Integral

To account for projection logic, we introduce a collapse weight functional W [x(t); ϵ(s)], and
write:

Z[ϵ(s)] =

∫
D[x(t)] exp

(
i

ℏ

∫ τ+ϵ

τ−ϵ

L(x, ẋ) dt

)
W [x(t); ϵ(s)]. (60)

One form of W models logical suppression of unallowed trajectories:

W [x(t); ϵ(s)] = exp

(
−
∫ τ+ϵ

τ−ϵ

ρc(t)V (x(t)) dt

)
, (61)

where ρc(t) is the collapse density function and V (x(t)) plays the role of a suppression
potential.
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19.4 Interpretation

This construction reinterprets a point in time as a logical-transition layer rather than a
geometric instant. The modified path integral:

• Encodes non-unitarity within the collapse interval,

• Allows asymmetric evolution via time-dependent weighting,

• Filters trajectories based on projection-determined logic.

The structured interval [τ − ϵ(s), τ + ϵ(s)] becomes a microphysical interface where quan-
tum coherence and classical outcomes diverge.

20 A Category-Theoretic View of the Structured Col-

lapse Interval ϵ(s)

The structured collapse interval [τ − ϵ(s), τ + ϵ(s)] represents a temporally and logically
rich micro-region where the classical notion of a point in time is replaced by a quantum
logical transition interface. Category theory provides a natural mathematical framework to
encode these relational and processual structures, focusing on morphisms (processes) rather
than intrinsic states. In this section, we explore the category-theoretic and topos-theoretic
structure associated with the ϵ(s) interval.

20.1 Time-Slices and Projection States as Categorical Objects

Let Tϵ be a category where:

• Objects are micro-time slices ti ∈ [τ − ϵ(s), τ + ϵ(s)],

• Each object corresponds to a quantum state or projection lattice at ti,

• Morphisms fij : ti → tj encode temporal evolution via structured collapse.

Unlike unitary quantum evolution, these morphisms are generally non-invertible, captur-
ing irreversibility and logical constraints due to projection operations.

20.2 Functorial Collapse Dynamics

We define a functor:
F : Tϵ → P , (62)

where P is the category of projection lattices (quantum logics), and F maps each micro-time
to its associated projection structure:

F (ti) = Lti , F (fij) = collapse-induced map Lti → Ltj .

This formulation encodes the full time-structured logical evolution during collapse as a
categorical diagram.
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20.3 Non-Symmetric Monoidal Structure

Due to time asymmetry, the composition of morphisms may not commute:

fjk ◦ fij ̸= fik. (63)

Thus, Tϵ is a non-symmetric monoidal category. This asymmetry reflects the physical irre-
versibility intrinsic to measurement and collapse processes.

20.4 Topos and Pre-Sheaf Structure

Inspired by Isham and Butterfield’s topos approach to quantum theory, we interpret the
time interval [τ − ϵ(s), τ + ϵ(s)] as a site over which a presheaf of logical structures is defined.

Define:

• A base category C whose objects are time-slices and morphisms are temporal inclusions,

• A presheaf F : Cop → Sets such that for each t, F(t) is the set of quantum propositions
(projections) available at that time.

This gives a topos SetC
op

representing the logical landscape of the ϵ(s) interval. Logical
truths vary functorially over time, encapsulating contextuality and temporal asymmetry.

The ϵ(s)-structured time interval can be interpreted as a quantum topos: a category
enriched by evolving logical contexts. Category theory, functors, and presheaf constructions
naturally express the dynamic interplay of collapse, logic, and time. In this framework, the
point of time becomes a categorical limit of logically-entangled states.

21 Operator Algebras and Von Neumann Structures

in the ϵ(s) Time Interval

The structured time interval [τ − ϵ(s), τ + ϵ(s)] represents not merely a geometric window,
but a logically and physically active region where projections, collapses, and non-unitary
transitions occur. A natural formalism to encapsulate these dynamics is that of operator
algebras, particularly von Neumann algebras, which elegantly describe observables, their
projections, and time evolution.

21.1 Observables as Operators

Let H be the Hilbert space of the system, and A an algebra of bounded operators acting
on H. The observables in quantum theory are represented as self-adjoint elements in A.
Projection operators P ∈ A satisfy P 2 = P = P † and define propositions about the system.

Within the interval [τ−ϵ(s), τ+ϵ(s)], a family of time-indexed projections {P (t)}t∈[τ−ϵ(s),τ+ϵ(s)]

governs the logical structure of collapse.
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21.2 Von Neumann Algebra Framework

A von Neumann algebra M ⊂ B(H) is a *-subalgebra of bounded operators that is closed
in the weak operator topology and contains the identity. It supports:

• A complete lattice of projections,

• Non-commutative probability measures via states,

• Modular theory for time evolution and entropy.

The projection operators {P (t)} naturally form a sublattice in M. Their ordering and
relationships encode the dynamic logical flow of measurement outcomes.

21.3 Time Asymmetry and Modular Theory

Von Neumann algebras come equipped with Tomita–Takesaki modular theory, which defines
a one-parameter automorphism group σω

t acting on M:

σω
t (A) = ∆itA∆−it, (64)

where ∆ is the modular operator associated with a cyclic separating vector and state ω.
If the collapse interval introduces a temporal asymmetry, the modular automorphisms

within [τ − ϵ(s), τ + ϵ(s)] may reflect a broken time-symmetry in the algebraic dynamics.

21.4 Collapse-Driven Algebraic Change

We can model collapse as a change in the expectation values:

⟨A⟩ω = Tr(ρA) → ⟨A⟩ω′ = Tr(PρPA), (65)

where P is a projection active in the collapse interval. The action of P reconfigures the state
and thus the algebraic structure under consideration.

The ϵ(s) time interval can be interpreted as a von Neumann substructure in temporal
flux, where projection operators define logical dynamics and collapse events correspond to
non-unitary updates in state and algebra. Modular flows within this interval offer a natural
encoding of time asymmetry, consistent with logical irreversibility.

22 Non-Hermitian QuantumMechanics and PT-Symmetry

in the ϵ(s) Region

The structured collapse interval [τ−ϵ(s), τ+ϵ(s)] represents a non-unitary transition zone in
the evolution of a quantum system. Standard quantum mechanics, which assumes unitary
time evolution generated by Hermitian Hamiltonians, fails to fully capture the behavior
within this collapse window. In this section, we employ the framework of non-Hermitian
quantum mechanics and PT -symmetric Hamiltonians to describe the dynamics within ϵ(s).
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22.1 Non-Unitary Dynamics During Collapse

Wavefunction collapse is an inherently non-unitary process. Within the ϵ(s)-interval, the
system experiences logical reduction rather than continuous Schrödinger evolution. Let Hϵ(s)

denote the effective Hamiltonian active only in the collapse region. Then the time evolution
is given by:

|ψ(τ + ϵ)⟩ = e−iHϵ(s)·2ϵ/ℏ|ψ(τ − ϵ)⟩, (66)

where Hϵ(s) ̸= H†
ϵ(s) in general.

This non-Hermitian evolution leads to norm decay and selection of outcomes — essential
features of the collapse process.

22.2 Non-Hermitian Hamiltonians and Complex Spectra

Let H be a non-Hermitian Hamiltonian with a bi-orthogonal set of eigenstates:

H|ϕn⟩ = En|ϕn⟩, H†|ϕ̃n⟩ = E∗
n|ϕ̃n⟩.

The eigenvalues En may be complex, with the imaginary part controlling exponential growth
or decay:

|ψ(t)⟩ =
∑
n

cne
−iEnt/ℏ|ϕn⟩. (67)

Within the collapse interval, the non-Hermitian structure of Hϵ(s) generates irreversible,
probabilistically weighted dynamics.

22.3 PT-Symmetric Quantum Theory

A special class of non-Hermitian Hamiltonians retains real eigenvalues under combined parity
(P) and time-reversal (T ) symmetry:

[PT ,H] = 0.

Such systems exhibit a PT -symmetric phase with real spectrum and a broken phase where
eigenvalues become complex conjugate pairs.

As collapse progresses within ϵ(s), the system may undergo a transition through an
exceptional point —a non-Hermitian degeneracy where eigenvalues and eigenvectors coalesce.

22.4 Exceptional Points and Topological Transitions

The occurrence of an exceptional point (EP) in the parameter space of Hϵ(s) signals a qual-
itative change in collapse behavior:

• Below the EP: quasi-unitary reversible evolution,

• At the EP: loss of diagonalizability, critical slowing down,

• Beyond the EP: exponential collapse.
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This topological feature enriches the collapse structure with non-analytic geometry, link-
ing logical projection with algebraic topology.

By employing non-Hermitian and PT -symmetric frameworks within ϵ(s), we gain a dy-
namic, analytical tool to model the non-unitary, irreversible aspects of collapse. The emer-
gence of complex spectra and exceptional points illustrates how physical and topological
structures can arise from logical constraints.

23 Collapse as Stochastic Evolution in the ϵ(s) Interval

The collapse process within the structured time interval [τ − ϵ(s), τ + ϵ(s)] can be natu-
rally interpreted through the lens of stochastic dynamics. In contrast to the deterministic
Schrödinger evolution, stochastic differential equations (SDEs) provide a powerful tool for
modeling systems influenced by random, time-localized perturbations. This approach con-
nects directly to physical collapse models, such as Continuous Spontaneous Localization
(CSL), where wavefunction collapse is d...

23.1 Stochastic Differential Modeling of Collapse

Consider the stochastic equation:

dx(t) = f(x, t) dt+ η(t) dWt, (68)

where:

• x(t) represents a dynamical variable (e.g., position, field amplitude),

• f(x, t) is the deterministic drift term,

• η(t) modulates the noise strength,

• Wt is a Wiener process (Brownian motion).

To model collapse within ϵ(s), we introduce a peaked noise structure:

η(t) = η0 ρϵ(t), with ρϵ(t) =
1

Z
exp

(
−(t− τ)2

ϵ2

)
, (69)

so that stochasticity is localized within the collapse window.

23.2 Collapse Localization and Noise Dominance

As ϵ(s) → 0, the noise profile ρϵ(t) becomes sharply peaked:

lim
ϵ→0

ρϵ(t) → δ(t− τ), (70)

but retains structure within the collapse window. This causes trajectories to undergo sharp
deviations, mimicking wavefunction collapse as a stochastic jump.
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23.3 Connection to CSL Models

The CSL (Continuous Spontaneous Localization) model describes collapse as a continuous
stochastic modification to the Schrödinger equation:

d|ψt⟩ =
[
− i

ℏ
H dt+

√
λ (L− ⟨L⟩t) dWt −

λ

2
(L− ⟨L⟩t)2 dt

]
|ψt⟩, (71)

where L is the collapse-generating operator and λ sets the collapse rate.
In our framework, λ becomes time-dependent via:

λ(t) = λ0 ρϵ(t), (72)

localizing the stochasticity and collapse dynamics within ϵ(s).

23.4 Interpretation

The use of stochastic processes enables a dynamical, probabilistic interpretation of collapse.
Rather than postulating a sudden discontinuity, we treat collapse as a random, sharply-
localized perturbation encoded within ϵ(s). This aligns with physical collapse theories while
embedding logical structure and temporal asymmetry.

24 Causal Set Structure of the ϵ(s) Interval

Causal Set Theory (CST) proposes that the fabric of spacetime is fundamentally discrete and
partially ordered, rather than smooth and continuous. This framework aligns naturally with
the idea that collapse, and by extension the structure of a point of time, can be represented
not as a geometric instant but as a logically and causally rich micro-region. In this section,
we reinterpret the interval [τ − ϵ(s), τ + ϵ(s)] as a causal sub-poset that governs collapse
transitions.

24.1 Basics of Causal Set Theory

A causal set C is a pair (C,≺) where:

• C is a set of discrete spacetime elements (events),

• ≺ is a partial order representing causal precedence: x ≺ y means x causally precedes
y.

Causal sets obey:

1. Irreflexivity: x ⊀ x,

2. Transitivity: x ≺ y ≺ z ⇒ x ≺ z,

3. Local finiteness: For any x ≺ z, the set {y |x ≺ y ≺ z} is finite.
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24.2 Microstructure of the ϵ(s) Interval

We model the interval [τ − ϵ(s), τ + ϵ(s)] as a causal sub-poset:

Cϵ = {ei ∈ C | ei ∈ [τ − ϵ(s), τ + ϵ(s)]}, (73)

where ei ≺ ej captures the causal influence of projection operations during collapse.
This replaces the continuous metric with a discrete, order-based geometry — suitable for

encoding the logical steps of measurement evolution.

24.3 Collapse as Causal Propagation

The causal structure imposes an ordering on collapse events:

Pi ≺ Pj ⇒ Collapse at ei influences outcome at ej. (74)

Such a formulation is valuable when multiple projections or observers interact within the
collapse interval, providing a discrete logic of who sees what and when.

24.4 Link to Logical Structure

The partial order over events can be lifted to a partial order over projections:

Pi ≤ Pj ⇔ support(Pi) ⊆ support(Pj), (75)

fusing the spacetime order with lattice structure from quantum logic. This results in a
causally coherent and logically meaningful structure of collapse.

By replacing smooth time evolution with a causal set over [τ − ϵ(s), τ + ϵ(s)], we embed
the collapse process in a discrete, order-theoretic spacetime. This model not only respects
logical flow but also accommodates multiple observers and projections without relying on
continuous geometry.

25 Sheaf Cohomology and Logical Obstructions in the

ϵ(s) Interval

Contextuality is a defining feature of quantum mechanics, reflecting the impossibility of as-
signing consistent values to all observables simultaneously. Sheaf theory, and more precisely
sheaf cohomology, offers a powerful mathematical framework to formalize this notion as a
topological obstruction. In the structured collapse interval [τ − ϵ(s), τ + ϵ(s)], we interpret
evolving projection logic as a presheaf, and study its global consistency properties through
cohomological tools.
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25.1 Presheaves Over Time-Slice Categories

Let C be a small category whose objects are micro-time slices in the interval [τ−ϵ(s), τ+ϵ(s)],
and morphisms represent temporal inclusion or causal order.

Define a presheaf:
F : Cop → Sets, (76)

where F(t) assigns to each time slice the set of projection-valued truth assignments (i.e.,
outcomes of measurement propositions).

25.2 Obstructions as Cohomological Phenomena

Consistent global truth assignment requires the existence of a global section:

σ ∈ Γ(C,F), (77)

which glues local assignments F(t) across time.
In the presence of contextuality, such as described in the Kochen–Specker theorem, no

global section exists. This failure manifests as a non-trivial Čech cohomology class:

[ω] ∈ Ȟ1(C,F) ̸= 0, (78)

signifying a logical obstruction to global coherence.

25.3 Contextuality and the ϵ(s) Interval

Within the collapse region, projections vary with time and may overlap in context-dependent
ways. The structure of F over C captures:

• Local sections = possible consistent partial assignments,

• Non-trivial cohomology = logical contradictions due to contextuality.

Therefore, collapse within [τ − ϵ(s), τ + ϵ(s)] corresponds to the dynamic emergence of
cohomological obstructions.

25.4 Logical Meaning of Cohomological Classes

The non-vanishing of a cohomology class encodes the impossibility of unifying all partial
truths into a single, global truth:

∀σi ∈ F(Ui), ∃ σi ̸= σj on Ui ∩ Uj. (79)

This aligns naturally with quantum logic, where the value of an observable may depend
on the measurement context. The ϵ(s) interval is then not only a site of collapse, but also
the locus of logical incompatibility.

Sheaf cohomology offers a topological formalism for the logical structure of collapse. The
structured time interval [τ − ϵ(s), τ + ϵ(s)] becomes a site where contextuality is encoded
as cohomological obstruction. This perspective bridges collapse dynamics with deep mathe-
matical logic and topology.
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26 Information Geometry and Logical Collapse in the

ϵ(s) Interval

The space of quantum states forms a differentiable manifold with a natural geometric struc-
ture, governed by probability distributions over measurement outcomes. In the context of
the structured collapse interval [τ−ϵ(s), τ+ϵ(s)], collapse manifests as a rapid and structured
change in the quantum state, which can be analyzed geometrically. Information geometry
provides a rigorous toolset to describe this change through differential geometry and metrics
such as the Fisher informa...

26.1 Quantum State Space as a Statistical Manifold

Let M be a statistical manifold of quantum states, parameterized by a set of probabilities
{pi} corresponding to outcomes of projection operators Pi. The quantum state evolves within
this manifold during measurement and collapse.

The Fisher information metric defines the intrinsic geometry of M:

ds2 =
∑
i

(∂ip)
2

pi
, (80)

where ∂ip denotes the derivative of pi with respect to a parameter along the evolution path.

26.2 Collapse as Geodesic Discontinuity

During unitary evolution, the system traces a smooth path in M. Collapse corresponds
to a sharp deviation — a sudden motion in the statistical manifold that is geometrically
non-smooth:

∆s2 =

∫ τ+ϵ(s)

τ−ϵ(s)

ds2 ≫ 0, (81)

indicating a region of high curvature localized within the ϵ(s) interval.

26.3 Curvature and Logical Change

The Fisher metric allows us to define scalar curvature R on the manifold. A localized peak
in R corresponds to:

• High sensitivity to initial conditions,

• Geometric encoding of logical projection events,

• Sharp informational transitions due to collapse.

Thus, collapse in the ϵ(s) interval appears as a region of intense curvature — the ”corner”
in the geometric trajectory of quantum evolution.
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26.4 Quantum Statistical Distance

For infinitesimal changes between neighboring states |ψ(t)⟩ and |ψ(t + dt)⟩, the statistical
(Bures) distance is:

ds2 = 4
(
1− |⟨ψ(t)|ψ(t+ dt)⟩|2

)
, (82)

which spikes in the collapse interval as the state undergoes rapid transformation.
Information geometry provides a rich language to describe the structure of collapse as

a geometric transition. The interval [τ − ϵ(s), τ + ϵ(s)] becomes a zone of informational
curvature, linking logical change with geometric deformation in the quantum state space.

27 Homotopy Type Theory and Evolving Truths in the

ϵ(s) Interval

Homotopy Type Theory (HoTT) is a foundational framework that unifies logic, type theory,
and homotopy theory. Its principles provide a rich language to encode evolving propositions,
equivalences, and topological structure. In the context of quantum collapse, HoTT offers a
novel perspective on how logical truth values may evolve over the structured time interval
[τ − ϵ(s), τ + ϵ(s)]. We propose that this interval may be interpreted as a higher inductive
type whose internal struc...

27.1 Propositions as Types and Quantum Logic

In HoTT, propositions are identified with types, and proofs with terms:

Proposition P ≡ Type A, Proof of P ≡ Element a ∈ A. (83)

Quantum logic, expressed through projection operators Pi, aligns naturally with this
structure. A projection asserts a proposition about the state of the system, and the act of
measurement corresponds to witnessing a term of that type.

27.2 Higher Inductive Types and Temporal Propositions

Higher inductive types allow the definition of not only points (terms) but also paths (equal-
ities), higher paths (equalities between equalities), and so on.

We define a higher inductive type Tϵ(s) representing the collapse interval:

• Points: projection truth values at specific instants,

• Paths: logical evolution between projections,

• Higher paths: contextual equivalences or contradictions.

The collapse process dynamically unfolds as the construction of Tϵ(s), encoding a space
of evolving logical truth.
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27.3 Evolving Truths and Homotopy Levels

Let Pt be a family of propositions over time. Their union across [τ − ϵ(s), τ + ϵ(s)] forms a
fibrant type, with homotopy levels indicating:

• π0: distinct projection contexts,

• π1: equivalences between measurement outcomes,

• πn: higher logical symmetries or contradictions.

Collapse thus defines a homotopical event — an alteration in the type-theoretic shape of
truth.

27.4 Interpretation and Logical Topology

This view enriches the structured time point with a logical topology:

• Collapse is not merely a selection of a value,

• It reshapes the homotopy type of the logical landscape,

• Quantum contextuality appears as non-trivial higher homotopy.

Homotopy Type Theory offers a unifying language to describe evolving logical truths
during quantum collapse. The interval [τ − ϵ(s), τ + ϵ(s)] becomes a higher inductive type —
a temporal topological space in which quantum propositions, proofs, and their equivalences
dynamically evolve.

28 Temporal Modal Logic and Projection Accessibility

in the ϵ(s) Interval

Modal logic introduces operators that describe necessity and possibility, enriching classical
logic with expressive power over time and knowledge. In the context of the structured
interval [τ − ϵ(s), τ + ϵ(s)], these modal operators allow us to articulate how propositions
(represented by projection operators) evolve, and which remain possible or necessary across
micro-instants within collapse.

28.1 Modal Operators in Collapse Context

Let ϕ denote a quantum proposition associated with a projection operator. We define the
modal operators:

• □ϕ: ϕ is necessarily true within the collapse window (i.e., true across all admissible
time slices in ϵ(s)),

• ♢ϕ: ϕ is possibly true at some time slice within ϵ(s).

These express logical strength over structured time, with □ encoding stability under
collapse and ♢ encoding availability.
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28.2 Kripke Semantics and Projection Accessibility

We model the time interval as a Kripke frame:

Kϵ = (W,R),

where:

• W is the set of micro-instants (time slices) within ϵ(s),

• R is a binary relation defined by projection accessibility: tiRtj means a collapse pro-
jection active at ti grants access to ϕ at tj.

The modal truth conditions become:

ti |= □ϕ ⇐⇒ ∀tj (tiRtj ⇒ tj |= ϕ), (84)

ti |= ♢ϕ ⇐⇒ ∃tj (tiRtj ∧ tj |= ϕ). (85)

28.3 Temporal Modal Collapse Logic

Propositions evolve non-trivially due to:

• Collapse-induced suppression (i.e., ti ̸|= ♢ϕ if ϕ collapses to zero),

• Emergent necessity from overlapping projections (□ϕ stable under conjunction),

• Contextual contradiction over incompatible paths.

This yields a modal logic of time-local projection truth that adapts dynamically during
ϵ(s).

Temporal modal logic offers a rich structure for expressing the dynamic semantics of
quantum propositions during collapse. The interval [τ − ϵ(s), τ + ϵ(s)] is represented as a
Kripke frame governed by projection accessibility, where modal operators describe the logic
of possibility and necessity under quantum measurement evolution.

29 Extensions: New Mathematical Structures around

ϵ(s)

In this section, we expand the theory by introducing several mathematical formulations that
further enrich the structure of time around the ϵ(s) interval.

29.1 Asymmetric Temporal Distance Function

We define an asymmetric temporal distance function D(τ, ϵ(s)) capturing logical skew across
collapse:

D(τ, ϵ(s)) =

∫ τ

τ−ϵ(s)

f−(t) dt−
∫ τ+ϵ(s)

τ

f+(t) dt, (86)

where f−(t) and f+(t) represent pre- and post-collapse temporal behavior respectively.
This captures the inherent irreversibility of collapse dynamics.
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29.2 Modular Automorphisms Across Collapse

Inspired by Tomita–Takesaki modular theory, we define time-dependent automorphisms
across the collapse interval:

σϵ
t(A) = Uϵ(t)AU

−1
ϵ(t), (87)

where Uϵ(t) encodes asymmetric unitary-like evolution distinct before and after τ .
This reflects how algebraic structures change dynamically across the ϵ(s) window.

29.3 Collapse Curvature Scalar

Using ideas from information geometry, we define a curvature scalar localized at τ :

R(τ) = lim
ϵ(s)→0

2

ϵ2(s)
(1− |⟨ψ(τ − ϵ)|ψ(τ + ϵ)⟩|) , (88)

measuring how sharply the quantum state changes across the collapse window.
A large R(τ) indicates a significant logical or informational jump.

29.4 Projection Dynamics Differential Equation

We propose a dynamical evolution for the family of projections active during collapse:

dP (t)

dt
= i [Heff(t), P (t)] +D[P (t)], (89)

where:

• Heff(t) is a possibly non-Hermitian effective Hamiltonian during collapse,

• D[P (t)] represents decoherence or stochastic disturbance terms localized within ϵ(s).

This formalizes the continuous but irreversible evolution of logical projections during
measurement.

The above extensions strengthen the mathematical infrastructure of the ϵ(s) framework,
bringing together logical asymmetry, non-Hermitian modularity, collapse curvature, and dy-
namical projection evolution into a unified and richly structured picture of time during
quantum events.

30 Extensions and New Formalisms

In this section, we propose new mathematical structures and equations to further deepen
the theoretical framework around the asymmetric temporal interval [τ − ϵ(s), τ + ϵ(s)].
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30.1 Dynamic Asymmetric Metric Tensor

We introduce a dynamic, asymmetric metric tensor across the collapse window:

gab(t) = ηab + ϵ(s) (θ(t− τ)− θ(τ − t))Aab(t), (90)

where:

• ηab is the background flat Minkowski metric,

• Aab(t) encodes small asymmetric temporal perturbations,

• θ(t) is the Heaviside step function.

This metric captures time-asymmetric deformation localized within ϵ(s), extending spacetime
structure beyond Riemannian symmetry [47].

30.2 Collapse Action Functional

We define an action principle localized in the collapse region:

Scollapse[ψ] =

∫ τ+ϵ(s)

τ−ϵ(s)

Lcollapse(ψ, ψ̇) dt, (91)

where Lcollapse is a non-Hermitian or stochastic Lagrangian reflecting collapse dynamics [99,
101].

This provides a variational approach to model structured collapse events.

30.3 Operator-Valued Temporal Curvature

We define a temporal curvature operator associated with projection dynamics:

K(t) = P (t)

(
d2

dt2
P (t)

)
−
(
d

dt
P (t)

)2

, (92)

where P (t) are time-evolving projection operators [70].
Nonzero K(t) signals nontrivial twisting of logical structures over the collapse interval.

30.4 Generalized Time-Shift Group with Asymmetry

We propose a generalized time translation group G(ϵ(s)) with modified group law:

g(ϵ1) · g(ϵ2) = g(ϵ1 + ϵ2 + δ(ϵ1, ϵ2)), (93)

where δ(ϵ1, ϵ2) is a small non-associative correction induced by collapse dynamics.
In the limit ϵ(s) → 0, standard time translation group properties are recovered.
These expansions demonstrate that the collapse interval [τ − ϵ(s), τ + ϵ(s)] is a rich

playground for asymmetric metrics, action principles, operator-valued curvatures, and novel
group structures. Future work can further explore quantization schemes and experimental
implications of these mathematical features.
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31 Expanded Discussion: Bell’s Inequalities, EPR Ex-

periments, and Contextuality

In this section, we further elaborate the mathematical and conceptual structure underlying
Bell’s theorem, its quantum mechanical violations, experimental realizations, and the deeper
link to contextuality.

31.1 The CHSH Inequality

The CHSH (Clauser-Horne-Shimony-Holt) inequality formalizes Bell’s inequality in terms of
expectation values of measurement outcomes:

|E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′)| ≤ 2, (94)

where:

• a, a′ are measurement settings for Alice,

• b, b′ are measurement settings for Bob,

• E(a, b) is the expectation value of the product of outcomes.

This inequality must be satisfied under any local hidden variable theory [52].

31.2 Quantum Mechanical Predictions

Quantum mechanics predicts that for entangled states such as the singlet Bell state

|ψ⟩ = 1√
2
(|00⟩+ |11⟩),

the correlation function is given by:

E(a, b) = cos(θab), (95)

where θab is the angle between Alice’s and Bob’s measurement settings [66].
Choosing appropriate angles, quantum theory predicts:

|E(a, b) + E(a, b′) + E(a′, b)− E(a′, b′)| = 2
√
2, (96)

which violates the classical limit of 2 and reaches the Tsirelson bound [67].

31.3 Experimental Requirements and Loopholes

Experimental tests of Bell inequalities must close certain loopholes:
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31.3.1 Detection Loophole

The detection efficiency η must satisfy:

η >
2

3
, (97)

to rule out explanations based on selective detection [54].

31.3.2 Locality Loophole

The measurement events must be spacelike separated to prevent causal influence between
choices.

Modern experiments (e.g., Hensen et al., 2015 [55]) have achieved high-efficiency, loophole-
free Bell tests.

31.4 Contextuality Beyond Nonlocality

Bell inequality violations imply not only nonlocality but also contextuality: the dependence
of measurement outcomes on other compatible measurements.

Formally, contextuality violates:

P (A|a, b) = P (A|a), (98)

meaning the probability of Alice’s outcome depends on Bob’s setting.
Contextuality has been formalized through Kochen–Specker type theorems and sheaf-

theoretic models [92].
Bell’s theorem, its quantum violations, and the experimental confirmations signify a deep

departure from classical intuitions about locality, realism, and contextual independence.
These results strongly support a view of quantum mechanics where logical structures, not
underlying deterministic variables, govern measurement outcomes.

32 Temporal Bell-Type Structures and Time-Structured

Collapse

In this section, we develop a new mathematical framework where Bell-type integrals and
inequalities are translated into the time-structured collapse interval [τ − ϵ(s), τ + ϵ(s)]. This
allows a direct comparison between spatially separated Bell experiments and temporally
structured collapse processes.

32.1 Bell-Type Correlation Integral

In the standard Bell framework, the correlation function between two measurement settings
a and b is given by:

E(a, b) =

∫
Λ

ρ(λ)A(a, λ)B(b, λ) dλ, (99)

where:
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Figure 7: Logical flow from the EPR paradox through Bell’s theorem to the realization of
contextuality in quantum mechanics. Experimental violations of Bell inequalities confirm
the contextual nature of quantum measurement outcomes.

• λ are hidden variables,

• ρ(λ) is the probability distribution over λ,

• A(a, λ) and B(b, λ) are deterministic outcome functions.

32.2 Collapse Correlation Integral Over Time

Analogously, we define a collapse correlation integral across the structured time interval:

C(τ) =
∫ τ+ϵ(s)

τ−ϵ(s)

ρ(t)P1(t)P2(t) dt, (100)

where:

• P1(t) and P2(t) are time-evolving projection operators,

• ρ(t) is a sharply peaked time-density centered at τ .

This establishes a time-domain analogue to Bell’s spatial correlations.
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32.3 Temporal Bell Inequality

We propose a temporal version of Bell-type inequalities:

|C(a, b) + C(a, b′) + C(a′, b)− C(a′, b′)| ≤ 2, (101)

where now C(a, b) denote correlations measured across collapse intervals for different settings.
Violation of this inequality would signal a ”temporal contextuality” emerging during

collapse.

32.4 Structured Collapse Path Integral

We define a path integral formulation for projection dynamics within the ϵ(s) interval:

Zϵ =

∫
D[P (t)] exp

(
i

∫ τ+ϵ(s)

τ−ϵ(s)

Lcollapse(P, Ṗ ) dt

)
, (102)

where Lcollapse is a non-unitary effective Lagrangian governing collapse.
This path integral encodes the full statistical and dynamical structure of structured

collapse events.

32.5 Collapse Probability Current

We define a collapse probability current:

j(t) = ρ(t)
d

dt

(
P (t)2

)
, (103)

and the total logical flow across the collapse window:

Jϵ =

∫ τ+ϵ(s)

τ−ϵ(s)

j(t) dt. (104)

Nonzero Jϵ quantifies the net logical change induced during the collapse.
By translating Bell-type correlation structures into the time-structured collapse interval,

we open new perspectives on how logical, dynamical, and probabilistic structures evolve
during quantum measurement. The temporal Bell inequality and collapse path integral offer
fertile ground for further investigation.

33 Consciousness and Structured Collapse within the

ϵ(s) Interval

Building upon the notion that consciousness interacts with quantum collapse, we propose
a deeper mathematical structure wherein the observer dynamically selects among evolving
projections within the structured interval [τ − ϵ(s), τ + ϵ(s)].
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Figure 8: Analogy between Bell’s framework (space-like separated measurements with hid-
den variables) and time-structured collapse (projection evolution within a temporal micro-
interval). This leads to the notion of temporal contextuality beyond classical limits.

33.1 Consciousness as a Section over Projection Sheaf

Let P denote the family of projection operators evolving within the collapse window.
We define a consciousness selection mapping:

S : P → {0, 1}, (105)

where:

• S(P ) = 1 if consciousness selects the projection P ,

• S(P ) = 0 otherwise.

Thus, consciousness acts as a dynamic section over the logical sheaf of projections.

33.2 Collapse Modulation by Conscious State

We propose that the probability of a projection P collapsing is modulated by an effective
consciousness field χ(t):

Pcollapse(P, t) ∝ exp

(
−(P − χ(t))2

σ2

)
, (106)
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where σ quantifies the width of influence of consciousness over collapse.
Higher alignment between P and χ(t) enhances the likelihood of collapse.

33.3 Entanglement of Projections and Observer State

Let Hsystem and Hobserver be Hilbert spaces associated with the system and the observer
respectively.

Collapse evolution is described by states:

|Ψ(t)⟩ ∈ Hsystem ⊗Hobserver, (107)

and measurement operations act as:

(P (t)⊗ I)|Ψ(t)⟩. (108)

Thus, projections within ϵ(s) inherently entangle observer knowledge and system reality.

33.4 Logical Curvature Induced by Consciousness

We define a consciousness-modulated logical curvature scalar:

Rχ(τ) = lim
ϵ(s)→0

2

ϵ2(s)
(1− |⟨ψ(τ − ϵ), χ(τ − ϵ)|ψ(τ + ϵ), χ(τ + ϵ)⟩|) . (109)

High Rχ(τ) indicates intense logical deformation at the point of collapse, driven by
consciousness-state transitions.

By structuring consciousness as a dynamic selector and influencer of projection collapse
within ϵ(s), we provide a richer, more interactive model of quantum measurement. The ϵ(s)
interval thus becomes a bridge between evolving logical states and observer participation in
reality formation.

34 EPR Paradox and Structured Collapse in the ϵ(s)

Interval

The Einstein-Podolsky-Rosen (EPR) paradox raises the question of whether quantum me-
chanics is complete, suggesting that hidden variables may predetermine measurement out-
comes. In the framework of structured collapse within the time interval [τ − ϵ(s), τ + ϵ(s)],
we propose a reformulation wherein correlations develop dynamically during measurement.

34.1 Time-Evolving Correlation Functions

Rather than assuming static correlations, we define a time-evolving correlation function:

E(a, b; t) = ⟨Ψ(t)|A(a)⊗B(b)|Ψ(t)⟩, (110)

where t belongs to the structured time interval, and A(a), B(b) are the observables for Alice
and Bob respectively.
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Figure 9: Flowchart illustrating how the consciousness field χ(t) dynamically selects projec-
tion operators P (t), modulates collapse probabilities Pcollapse(P, t), and drives the structured
collapse outcome within the interval [τ − ϵ, τ + ϵ].

34.2 Time-Averaged Bell Parameter

We define a time-averaged Bell-type parameter over the structured collapse window:

Bϵ =
1

2ϵ(s)

∫ τ+ϵ(s)

τ−ϵ(s)

[E(a, b; t) + E(a, b′; t) + E(a′, b; t)− E(a′, b′; t)] dt. (111)

Classical hidden variable theories must satisfy:

|Bϵ| ≤ 2, (112)

whereas quantum mechanics allows up to:

|Bϵ| ≤ 2
√
2. (113)

Thus, Bell violations are smeared across the structured collapse rather than being in-
stantaneous.
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34.3 Weighted Collapse Integral

Introducing a collapse weight function ρ(t) localized around τ , we define:

Bϵ,ρ =

∫ τ+ϵ(s)

τ−ϵ(s)

ρ(t) [E(a, b; t) + E(a, b′; t) + E(a′, b; t)− E(a′, b′; t)] dt. (114)

This models more refined logical timing during collapse events, allowing emphasis on
specific micro-time slices.

34.4 Collapse Rate of Correlations

We define the collapse rate as the absolute time derivative of correlations:

Γcollapse(t) =

∣∣∣∣ ddt⟨Ψ(t)|A(a)⊗B(b)|Ψ(t)⟩
∣∣∣∣ . (115)

Sharp peaks in Γcollapse(t) signal rapid logical transitions within ϵ(s).
By modeling correlation evolution during the structured collapse window, we reinter-

pret EPR correlations as dynamically emergent, not statically encoded by hidden variables.
The ϵ(s) structure thus provides a novel quantum-logical mechanism bridging measurement,
nonlocality, and time asymmetry.

35 Advanced Structures in EPR and Time-Structured

Collapse

Beyond the dynamic correlation framework, we propose additional mathematical structures
that deepen the description of quantum measurement, entanglement, and collapse within
the interval [τ − ϵ(s), τ + ϵ(s)].

35.1 Collapse Connection: A Differential Geometric Structure

We introduce a collapse connection ∇ϵ acting on the projection operators:

∇ϵP (t) =
dP (t)

dt
+A(t)P (t), (116)

where A(t) is a collapse gauge field encoding logical twisting.
The curvature of this connection,

F(t) = ∇2
ϵP (t), (117)

measures the deviation from flat logical evolution during collapse.
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35.2 Collapse Entropy Production

We define a local entropy production associated with collapse pathways:

∆Scollapse(t) = −
∑
i

pi(t) log pi(t), (118)

where pi(t) are instantaneous collapse probabilities across different projection outcomes.
Integration over the collapse window gives total logical entropy generated:

Sϵ =

∫ τ+ϵ(s)

τ−ϵ(s)

∆Scollapse(t) dt. (119)

35.3 Categorical Structure of Collapse

We define a Collapse Category Cϵ:

• Objects: Projections P (t) at different micro-times t ∈ [τ − ϵ(s), τ + ϵ(s)],

• Morphisms: Logical evolution maps ft1t2 : P (t1) → P (t2).

Composition is associative:
ft1t3 = ft2t3 ◦ ft1t2 ,

and identity morphisms correspond to no logical change.
Thus, collapse dynamics naturally induce a small category structure.
The collapse window [τ−ϵ(s), τ+ϵ(s)] can be endowed with rich geometric, probabilistic,

and categorical structures. These deeper formalisms offer new tools to mathematically de-
scribe the logical dynamics underpinning quantum measurement and entanglement collapse.

36 Homotopy Type Theory and Structured Collapse

within ϵ(s)

Homotopy Type Theory (HoTT) provides a powerful language to model logical evolution
through higher paths and types. We propose that the structured collapse interval [τ−ϵ(s), τ+
ϵ(s)] can be naturally described as a higher inductive type capturing evolving propositions
and identifications.

36.1 Collapse Interval as a Higher Inductive Type (HIT)

We define the collapse process as a Higher Inductive Type Collapseϵ:

• Points: Projections P (t) at each micro-time t ∈ [τ − ϵ(s), τ + ϵ(s)],

• Paths: Logical identifications between successive projections,

• Higher Paths: Homotopies ensuring coherence between evolving projections.

Thus, the collapse window forms a structured logical space rather than a singular event.
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36.2 Temporal Path Composition

Logical evolution during collapse can be viewed as path composition.
If:

p : P (τ − ϵ) = P (τ), (120)

and
q : P (τ) = P (τ + ϵ), (121)

then the full logical transition is the composite path:

q ◦ p : P (τ − ϵ) = P (τ + ϵ). (122)

Thus, collapse is a concatenation of micro-logical transformations.

36.3 Collapse Fundamental Group

The fundamental group at P (τ) encodes logical loops during collapse:

π1(Collapseϵ, P (τ)), (123)

representing logical automorphisms around the midpoint projection.
Higher homotopy groups πn capture more intricate logical symmetries.

36.4 Collapse as a Fibration

We view the structured collapse as a fibration:

π : E → [τ − ϵ(s), τ + ϵ(s)], (124)

where:

• E is the total space of evolving projections,

• Fibers π−1(t) = P (t) are the local projection states.

Logical continuity across time is maintained by fibration coherence.
The structured collapse process within ϵ(s) can be elegantly described using tools from

Homotopy Type Theory. Rather than an instantaneous event, collapse becomes a smooth
logical evolution encoded by higher paths, compositions, fibrations, and homotopy groups.

37 Information Geometry and Structured Collapse within

ϵ(s)

Information Geometry offers a powerful formalism to describe the evolution of quantum
states as geometric objects on statistical manifolds. Within the collapse interval [τ−ϵ(s), τ+
ϵ(s)], sudden changes in the logical structure are reflected as sharp geometric distortions.
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37.1 Information-Geometric Path Length

We define the path length traversed by the quantum state during the collapse window as:

Lϵ =

∫ τ+ϵ(s)

τ−ϵ(s)

√
gij(θ(t))

dθi

dt

dθj

dt
dt, (125)

where:

• θi(t) are coordinates on the statistical manifold of quantum states,

• gij is the Fisher information metric.

A sharp increase in Lϵ signals a significant logical transition.

37.2 Information-Geometric Curvature Scalar

We define the information-geometric scalar curvature at τ :

R(τ) = gij
(
∂iΓ

k
jk − ∂kΓ

k
ij + Γk

ijΓ
l
kl − Γk

ilΓ
l
jk

)
, (126)

where Γk
ij are the Christoffel symbols derived from gij.

A spike in R(τ) indicates intense logical warping during collapse.

37.3 Collapse Entropy Flow

We define the entropy flow across the structured collapse as:

dS

dt
=
∑
i

d

dt
(−pi(t) log pi(t)) , (127)

where pi(t) are evolving probabilities of outcomes during the collapse window.
Integrating over [τ − ϵ(s), τ + ϵ(s)] gives the total entropy produced during collapse.

37.4 Fisher Information Rate

The average Fisher information rate during collapse is given by:

Fϵ =
1

2ϵ(s)

∫ τ+ϵ(s)

τ−ϵ(s)

gij(θ(t))
dθi

dt

dθj

dt
dt. (128)

A peak in Fϵ signals the moment of maximal informational restructuring.
The structured collapse across ϵ(s) manifests as a geometric event characterized by sud-

den increases in path length, scalar curvature, Fisher information rate, and entropy flow.
Information Geometry thus provides a precise mathematical language for the evolving logi-
cal structure during quantum measurement.
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Figure 10: Behavior of key information-geometric quantities across the structured collapse
interval [τ − ϵ, τ + ϵ]. Sharp peaks in scalar curvature R(t), entropy flow dS

dt
, and Fisher

information rate Fϵ(t) characterize the collapse event.

38 Temporal Modal Logic and Structured Collapse within

ϵ(s)

Temporal Modal Logic offers a natural framework to describe evolving logical truth values
during collapse within the interval [τ − ϵ(s), τ + ϵ(s)]. Modal operators □ (necessity) and ♢
(possibility) capture the stability and evolution of propositions across micro-times.

38.1 Dynamic Kripke Structure Across ϵ(s)

We define a time-evolving Kripke frame:

K(t) = (W (t), R(t)), (129)

where:

• W (t) is the set of possible projections (logical worlds) at time t,

• R(t) ⊆ W (t)×W (t) is the accessibility relation describing logical evolution.

The Kripke structure dynamically changes during the collapse window.

38.2 Temporal Modal Collapse Conditions

For a proposition ϕ associated with a projection P (t):
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Figure 11: Temporal modal logic structure across the collapse interval [τ − ϵ, τ + ϵ]. Proposi-
tions transition from possibility () to necessity () as the collapse stabilizes through temporal
accessibility relations.

• □ϕ holds if for all t′ ∈ [τ − ϵ(s), τ + ϵ(s)],

R(t, t′) ⇒ P (t′) projects onto ϕ.

• ♢ϕ holds if there exists t′ ∈ [τ − ϵ(s), τ + ϵ(s)] such that P (t′) projects onto ϕ.

Thus, modal operators reflect logical persistence or instability during collapse.

38.3 Modal Distance and Logical Stability

We define a ”modal distance” measuring the minimal logical effort needed to stabilize ϕ:

dmodal(ϕ) = inf
t′∈[τ−ϵ(s),τ+ϵ(s)]

{cost to establish ϕ at t′} . (130)

Small dmodal implies that ϕ is nearly necessary (□ϕ), whereas large dmodal indicates
fragility.

38.4 Collapse Transition Probabilities

We define the probability of logical transitions during collapse:

P (ϕ⇝ ψ) = Probability that ♢(ϕ ∧ ψ) evolves into □ψ. (131)
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Thus, collapse can be modeled not only as deterministic logical shift but also as proba-
bilistic modal transitions.

Temporal Modal Logic provides a rich conceptual language for describing structured
collapse. Necessity, possibility, stability distances, and probabilistic transitions all interweave
to form a dynamic logical tapestry across the micro-time structure of ϵ(s).

Figure 12: Operator algebra evolution during the structured collapse interval [τ − ϵ, τ + ϵ].
Projections evolve via automorphisms αt, modular flow σt introduces time asymmetry, and
logical entropy Salg(t) increases, capturing collapse-induced logical deformation.

39 Operator Algebras and Structured Collapse within

ϵ(s)

The structured collapse interval [τ − ϵ(s), τ + ϵ(s)] can be described using the formalism
of von Neumann algebras, projection lattices, and modular theory. Logical changes during
collapse correspond to dynamical deformations within the operator algebra.

39.1 Collapse-Induced Automorphisms

Let A be the von Neumann algebra generated by the projection operators {P (t)}.
We define a time-dependent automorphism:

αt(P ) = U(t)PU †(t), (132)
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where U(t) is the collapse evolution operator, potentially non-unitary during ϵ(s).
Collapse thus acts via conjugations inside the operator algebra.

39.2 Generator of Collapse Evolution

We postulate a generator G governing collapse dynamics:

dP (t)

dt
= G(P (t)). (133)

This differential equation encodes the logical deformation of projections during collapse.

39.3 Time-Asymmetric Modular Flow

Drawing from Tomita-Takesaki modular theory, we define a modular automorphism group:

σt(P ) = ∆itP∆−it, (134)

where ∆ is the modular operator associated with the algebra A.
The modular flow σt introduces intrinsic time-asymmetry into the collapse evolution.

39.4 Collapse Entropy of Operator Algebra

We define the algebraic entropy across the structured collapse:

Salg = −
∑
i

Tr(Pi logPi), (135)

where {Pi} are the projections at micro-times during ϵ(s).
A sharp change in Salg reflects intense logical reconfiguration.
Structured collapse within ϵ(s) naturally deforms the operator algebra through auto-

morphisms, non-unitary evolution, modular asymmetries, and entropy generation. This
operator-theoretic description deepens our understanding of logical transitions during quan-
tum measurement.

40 Path Integrals over Structured Collapse Interval

ϵ(s)

We propose a reformulation of quantum collapse within the structured time interval [τ −
ϵ(s), τ + ϵ(s)] in terms of a logical path integral over evolving projection operators. This
approach unites quantum dynamics with logical deformation through functional integration.
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40.1 Structured Collapse Path Integral

The amplitude for structured collapse can be expressed as:

Aϵ =

∫
D[P (t)] exp (iS[P (t)]) , (136)

where:

• D[P (t)] is the path integral measure over projections P (t),

• S[P (t)] is the logical action functional characterizing collapse dynamics.

40.2 Logical Action Functional

We postulate the action functional for collapse as:

S[P (t)] =

∫ τ+ϵ

τ−ϵ

Tr

(
dP

dt
P (t)

)
dt, (137)

capturing the dynamical deformation of projections across micro-time.
Alternatively, for stochastic collapse models, we use:

S[P (t)] =

∫ τ+ϵ

τ−ϵ

(
Tr

(
dP

dt

)2

+ V (P (t))

)
dt, (138)

where V (P ) is an effective logical potential.

40.3 Collapse Effective Potential

We define the collapse effective potential:

V (P ) = − log (Pcollapse(P )) , (139)

where Pcollapse(P ) is the probability density for selecting a particular projection during col-
lapse.

The logical landscape V (P ) biases certain paths over others.

40.4 Collapse Saddle Points

Extremizing the action functional,
δS[P (t)] = 0, (140)

yields saddle-point projections corresponding to dominant collapse trajectories.
Thus, structured collapse is governed by a logical ”least action” principle.
The path integral formalism over ϵ(s) models collapse as a sum over logical histories.

Logical deformations, effective potentials, and dominant saddle points together define the
structured emergence of reality from quantum superposition.
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41 Sheaf Cohomology and Logical Obstructions in the

ϵ(s) Interval

Contextuality is a defining feature of quantum mechanics, reflecting the impossibility of as-
signing consistent values to all observables simultaneously. Sheaf theory, and more precisely
sheaf cohomology, offers a powerful mathematical framework to formalize this notion as a
topological obstruction. In the structured collapse interval [τ − ϵ(s), τ + ϵ(s)], we interpret
evolving projection logic as a presheaf, and study its global consistency properties through
cohomological tools.

41.1 Presheaves Over Time-Slice Categories

Let C be a small category whose objects are micro-time slices in the interval [τ−ϵ(s), τ+ϵ(s)],
and morphisms represent temporal inclusion or causal order.

Define a presheaf:
F : Cop → Sets, (141)

where F(t) assigns to each time slice the set of projection-valued truth assignments (i.e.,
outcomes of measurement propositions).

41.2 Obstructions as Cohomological Phenomena

Consistent global truth assignment requires the existence of a global section:

σ ∈ Γ(C,F), (142)

which glues local assignments F(t) across time.
In the presence of contextuality, such as described in the Kochen–Specker theorem, no

global section exists. This failure manifests as a non-trivial Čech cohomology class:

[ω] ∈ Ȟ1(C,F) ̸= 0, (143)

signifying a logical obstruction to global coherence.

41.3 Contextuality and the ϵ(s) Interval

Within the collapse region, projections vary with time and may overlap in context-dependent
ways. The structure of F over C captures:

• Local sections = possible consistent partial assignments,

• Non-trivial cohomology = logical contradictions due to contextuality.

Therefore, collapse within [τ − ϵ(s), τ + ϵ(s)] corresponds to the dynamic emergence of
cohomological obstructions.
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41.4 Logical Meaning of Cohomological Classes

The non-vanishing of a cohomology class encodes the impossibility of unifying all partial
truths into a single, global truth:

∀σi ∈ F(Ui), ∃ σi ̸= σj on Ui ∩ Uj. (144)

This aligns naturally with quantum logic, where the value of an observable may depend
on the measurement context. The ϵ(s) interval is then not only a site of collapse, but also
the locus of logical incompatibility.

Sheaf cohomology offers a topological formalism for the logical structure of collapse. The
structured time interval [τ − ϵ(s), τ + ϵ(s)] becomes a site where contextuality is encoded
as cohomological obstruction. This perspective bridges collapse dynamics with deep mathe-
matical logic and topology.

42 Asymmetric Non-Hermitian Evolution during Struc-

tured Collapse

In the framework of structured collapse over the micro-time interval [τ − ϵ(s), τ + ϵ(s)],
time asymmetry is a fundamental feature. The evolution is modeled using non-Hermitian,
time-asymmetric Hamiltonians, reflecting the intrinsic irreversibility of the collapse process.

42.1 Asymmetric, Non-Hermitian Hamiltonian

The dynamics inside ϵ(s) are governed by a non-Hermitian Hamiltonian H(t) satisfying:

H(t) ̸= H†(−t). (145)

Thus, time reversal symmetry is explicitly broken during collapse.

42.2 Asymmetric Evolution Operator

The time-evolution operator is defined as:

U(t2, t1) = T exp

(
−i
∫ t2

t1

H(t) dt

)
, (146)

where T denotes time-ordering.
Crucially,

U(t2, t1) ̸= U †(t1, t2), (147)

demonstrating explicit irreversibility.
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42.3 Non-Hermitian Schrödinger Equation

The collapse dynamics obey a generalized Schrödinger equation:

i
d

dt
|Ψ(t)⟩ = H(t)|Ψ(t)⟩, (148)

with H(t) non-Hermitian and asymmetric across [τ − ϵ, τ + ϵ].
This allows for norm decay, amplification, or restructuring during collapse.

42.4 Logical Arrow of Time

Logical propositions encoded by projections P (t) evolve irreversibly:

P (τ − ϵ)
collapse−−−−→ P (τ)

collapse−−−−→ P (τ + ϵ), (149)

with no reversible logical pathway backward in time.
Collapse thus installs a logical ”arrow of time” intrinsically within micro-structure.

42.5 Topological Bifurcations

Although exceptional points (coalescence of eigenvalues) may occur, they signal irreversible
bifurcations rather than symmetric phase transitions.

Collapse is a topological change without PT symmetry.
Collapse within ϵ(s) reflects time-asymmetric, non-unitary evolution, modeled naturally

by non-Hermitian, non-PT-symmetric Hamiltonians. Logical irreversibility emerges as a
fundamental feature of structured collapse.

43 Stochastic Collapse within the Structured Time In-

terval ϵ(s)

Collapse within the micro-time interval [τ − ϵ(s), τ + ϵ(s)] can be effectively modeled as
a stochastic process. Quantum state evolution becomes governed by stochastic differential
equations (SDEs), with collapse induced by random fluctuations localized inside ϵ(s).

43.1 Stochastic Schrödinger Equation

We model the quantum state evolution during collapse using a stochastic differential equa-
tion:

d|Ψ(t)⟩ = (−iH(t) dt+ L(t) dWt) |Ψ(t)⟩, (150)

where:

• H(t) is the non-Hermitian system Hamiltonian,

• L(t) is the collapse operator,

• dWt is an increment of a Wiener process (white noise).

Stochastic perturbations dominate during the collapse window.
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43.2 Collapse Noise Intensity

The noise intensity η(t) is sharply localized around τ :

η(t) = η0 exp

(
−(t− τ)2

2σ2

)
, (151)

where σ ∼ ϵ(s).
Collapse noise peaks during [τ − ϵ(s), τ + ϵ(s)] and vanishes outside.

43.3 Nonlinear Stochastic Schrödinger Equation

Alternatively, collapse can be described by a nonlinear stochastic Schrödinger equation:

d|Ψ(t)⟩ = (−iH(t) dt+ (L(t)− ⟨L(t)⟩) dWt) |Ψ(t)⟩, (152)

where ⟨L(t)⟩ = ⟨Ψ(t)|L(t)|Ψ(t)⟩.
This form ensures norm preservation and localization of collapse outcomes.

43.4 Collapse Probability Density over Paths

The probability density for collapse following a given path P (t) can be expressed as:

P [P ] ∝ exp

(
− 1

2σ2

∫ τ+ϵ

τ−ϵ

∥∥∥∥dP (t)dt

∥∥∥∥2 dt
)
. (153)

Collapse paths minimizing fluctuations are statistically favored.
Structured collapse within ϵ(s) naturally invites a stochastic description, bridging into

Continuous Spontaneous Localization (CSL) models. Collapse is characterized by noise-
peaked dynamics, nonlinear norm-preserving evolution, and probabilistically favored logical
trajectories.

44 Conclusion

We have developed a comprehensive theory of time structured collapse based on the in-
troduction of an asymmetric temporal interval [τ − ϵ(s), τ + ϵ(s)]. Within this framework,
quantum collapse is no longer an instantaneous, external event but an intrinsic, logically
governed evolution embedded in the fabric of time itself.

By modeling collapse through asymmetric distances, stochastic differential equations,
non-Hermitian operators, logical cohomology, and topological bifurcations, we uncover a
rich mathematical tapestry underlying the emergence of reality. Logical propositions evolve
irreversibly, modular flows generate time asymmetry, and cohomological obstructions for-
malize the contextuality of measurement outcomes.

This framework offers new pathways toward understanding the deep connections between
time asymmetry, measurement, consciousness, and information structure. Future directions
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include a more rigorous axiomatization of the collapse interval using category theory, ex-
ploration of emergent spacetime from logical structures, and experimental implications for
detecting micro-time asymmetries at the Planck scale and beyond.

Keywords: Time asymmetry, structured collapse, asymmetric distance, stochastic quan-
tum collapse, operator algebras, sheaf cohomology, causal sets, information geometry, homo-
topy type theory, modal logic.
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Figure 13: Fancier depiction of logical path integral landscape during structured collapse.
The dominant collapse path corresponds to the saddle point of minimal action, with near-
dominant paths representing slightly less probable logical trajectories.
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