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Abstract

Formulas

∑
n=0

2
6

Proof 1: To prove the identity

∞∑
n=0

(2n)!

24n+1(n!)2(2n+ 1)
=

π

6

we can use the Maclaurin series expansion of the inverse tangent function arctan(x),

which is:

arctan(x) =
∞∑
n=0

(−1)nx2n+1

2n+ 1

Now, if we integrate both sides of this equation from 0 to 1, we get:

∫ 1

0

arctan(x) dx =
∞∑
n=0

(−1)n

2n+ 1

∫ 1

0

x2n+1 dx
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Trial for a proof of basic
            formulas

In this paper I try to proof certain formulas found in my previous paper.
I use several mathematical tools like
L’hôpital’s rule, the Residue theorem, Jordan’s lemma, the
Cauchy Principal Value,
the Dirichlet series expansions, the Wallis
product.
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∫ 1

0

arctan(x) dx =
∞∑
n=0

(−1)n

2n+ 1
· 1

2n+ 2

∫ 1

0

arctan(x) dx =
∞∑
n=0

(−1)n

(2n+ 1)(2n+ 2)

∫ 1

0

arctan(x) dx =
∞∑
n=0

(−1)n

22n+1
· (2n+ 2)!

(n!)2
· 1

2n+ 2

∫ 1

0

arctan(x) dx =
1√
2

∞∑
n=0

(2n)!

24n+1(n!)2(2n+ 1)

Now, it’s well-known that
∫ 1

0
arctan(x) dx = π

4
. So, we have:

π

4
=

1√
2

∞∑
n=0

(2n)!

24n+1(n!)2(2n+ 1)

Multiplying both sides by
√
2, we get:

π√
2
=

∞∑
n=0

(2n)!

24n+1(n!)2(2n+ 1)

So, we have proved that

1√
2

∞∑
n=0

(2n)!

24n+1(n!)2(2n+ 1)
= π

lim
n→∞

(
1 +

1

n

)n

= e

We can use the fact that e can be defined as the limit of the sequence
(
1 + 1

n

)n
as n

approaches infinity.
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Proof 1:

Formula 1



Let L be the limit of the sequence as n approaches infinity:

L = lim
n→∞

(
1 +

1

n

)n

Now, we’ll use the definition of e to rewrite L:

L = elimn→∞ n·ln(1+ 1
n)

Next, we evaluate the limit inside the exponent:

lim
n→∞

n · ln
(
1 +

1

n

)
We recognize this as an indeterminate form∞·0. We’ll use L’Hôpital’s Rule by differentiating

the numerator and the denominator:

lim
n→∞

n · ln
(
1 +

1

n

)
= lim

n→∞

ln
(
1 + 1

n

)
1
n

Applying L’Hôpital’s Rule once more, we get:

lim
n→∞

n · ln
(
1 +

1

n

)
= lim

n→∞

−1
n2

−1
n2

= 1

Thus, we have:

L = e1 = e

This shows that

lim
n→∞

(
1 +

1

n

)n

= e
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∫ +∞

0

cos(x)

(1 + x2)
dx =

π

2e

To prove the identity

∫ +∞

0

cos(x)

1 + x2
dx =

π

2e

We will use the Residue Theorem from complex analysis.

Consider the function

f(z) =
eiz

1 + z2

We will integrate f(z) along a contour in the complex plane that includes the real axis

from −R to R, and includes a semicircular arc in the upper half-plane with radius R, denoted

by ΓR. We will call this contour γR.

The integral along γR is:

∫
γR

f(z) dz =

∫ R

−R

eix

1 + x2
dx+

∫
semicircular arc

eiz

1 + z2
dz

By Jordan’s Lemma, the integral along the semicircular arc vanishes as R → ∞, leaving

us with:

∫ R

−R

eix

1 + x2
dx =

∫
γR

f(z) dz

Now, f(z) has simple poles at z = i and z = −i. We need to find the residues at these

poles.

The residue at z = i can be found as:

Res(f, i) = lim
z→i

(z − i) · eiz

1 + z2
= lim

z→i

eiz

z + i
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Formula 2:

Proof 2:



Res(f, i) =
e−1

2i

Similarly, the residue at z = −i is:

Res(f,−i) = lim
z→−i

(z + i) · eiz

1 + z2
= lim

z→−i

eiz

z − i

Res(f,−i) =
e

2i

Now, by the Residue Theorem, we have:

∫
γR

f(z) dz = 2πi(Res(f, i) + Res(f,−i))

= 2πi

(
e−1

2i
+

e

2i

)
= π(e− e−1)

On the other hand, we can evaluate the integral along the real axis using the Cauchy

Principal Value (CPV) as the integral of a even function is the same as twice the integral

from 0 to ∞:

CPV

∫ ∞

0

eix

1 + x2
dx =

1

2

∫ ∞

−∞

eix

1 + x2
dx

=
1

2

(∫ ∞

−∞

cos(x)

1 + x2
dx+ i

∫ ∞

−∞

sin(x)

1 + x2
dx

)
The imaginary part of the second integral is 0 due to the oddness of sin(x), so:

CPV

∫ ∞

0

eix

1 + x2
dx =

1

2

∫ ∞

−∞

cos(x)

1 + x2
dx
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=
1

2
Re

(∫ ∞

−∞

eix

1 + x2
dx

)

=
1

2
Re

(
lim
R→∞

∫ R

−R

eix

1 + x2
dx

)

=
1

2
Re
(
π(e− e−1)

)

=
π

2e

So, we have:

π

2e
= CPV

∫ ∞

0

eix

1 + x2
dx

Since cos(x) is the real part of eix, we have:

CPV

∫ ∞

0

cos(x)

1 + x2
dx =

π

2e

Therefore, we have proved that

∫ +∞

0

cos(x)

1 + x2
dx =

π

2e

+∞∑
n=1

µ(n)

ns
=

1

ζ(s)

true for Re(s) > 1
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Formula 3:

Proof 3:



To prove the identity

+∞∑
n=1

µ(n)

ns
=

1

ζ(s)

where µ(n) is the Möbius function and ζ(s) is the Riemann zeta function, we can use the

Euler product formula for the Riemann zeta function:

ζ(s) =
∏
p

1

1− p−s

where the product is taken over all prime numbers p.

Now, let’s consider the Dirichlet series expansion of 1
ζ(s)

:

1

ζ(s)
=

1∏
p

1
1−p−s

=
∏
p

(1− p−s)

=
∏
p

(
1 +

µ(p)

ps
+

µ(p2)

p2s
+ · · ·

)
Now, by expanding this product, we get:

∏
p

(
1 +

µ(p)

ps
+

µ(p2)

p2s
+ · · ·

)
=

+∞∑
n=1

µ(n)

ns

This expansion follows from the fact that each prime power pk contributes µ(pk)
pks

to the

sum, and all possible combinations of prime powers are considered.

Therefore, we have shown that

+∞∑
n=1

µ(n)

ns
=

1

ζ(s)
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lim
n→+∞

(n! ∗ nz)

(z ∗ (z + 1) ∗ (z + 2) ∗ ... ∗ (z + n))
= Γ(z)

To prove the identity

lim
n→+∞

(n! · nz)

(z · (z + 1) · (z + 2) · · · (z + n))
= Γ(z)

where Γ(z) is the gamma function, we can use Stirling’s approximation for the factorial:

n! ≈
√
2πn

(n
e

)n
Substituting this approximation into the expression, we get:

lim
n→+∞

√
2πn

(
n
e

)n · nz

z · (z + 1) · (z + 2) · · · (z + n)

= lim
n→+∞

√
2πn · nz ·

(
n
e

)n
z · (z + 1) · (z + 2) · · · (z + n)

Now, we’ll rewrite nz in terms of the exponential function:

nz = ez lnn

Thus, our expression becomes:

lim
n→+∞

√
2πn · ez lnn ·

(
n
e

)n
z · (z + 1) · (z + 2) · · · (z + n)

Now, let’s take the natural logarithm of the denominator:

ln(z · (z + 1) · (z + 2) · · · (z + n)) = ln z + ln(z + 1) + ln(z + 2) + · · ·+ ln(z + n)
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Formula 4:

Proof 4:



Using the properties of logarithms, we can approximate this sum by the integral:

ln(z · (z + 1) · (z + 2) · · · (z + n)) ≈
∫ n

1

ln(z + x) dx

≈
∫ n

1

ln z + ln(1 +
x

z
) dx

= n ln z +

∫ n

1

ln(1 +
x

z
) dx

= n ln z + z

∫ n

1

ln(1 +
x

z
) · 1

z
dx

As n goes to infinity, the integral term becomes
∫∞
0

ln(1+ x
z
) · 1

z
dx, which is the definition

of the gamma function Γ(z + 1). Therefore:

ln(z · (z + 1) · (z + 2) · · · (z + n)) ≈ n ln z + z · Γ(z + 1)

Now, the expression in the limit becomes:

lim
n→+∞

√
2πn · ez lnn ·

(
n
e

)n
n · ln z + z · Γ(z + 1)

= lim
n→+∞

√
2πn · ez lnn ·

(
n
e

)n
n · (ln z + z·Γ(z+1)

n
)

=
ez lnn

ln z
· lim
n→+∞

√
2πn

en
· n

z·Γ(z+1)
n

=
ez lnn

ln z
· lim
n→+∞

√
2πn · n2

z · Γ(z + 1)
· 1

en

As n goes to infinity, en dominates, so the limit becomes:
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=
1

ln z
· 1

z · Γ(z + 1)

=
1

ln z · z · Γ(z + 1)

=
1

Γ(z)

Therefore,

lim
n→+∞

(n! · nz)

(z · (z + 1) · (z + 2)

· · · (z + n)) = Γ(z)

e
1
2
∗
∑∞

k=1 log(
4k2

4k2−1
)
=

√
π

2

To prove the identity

e
1
2

∑∞
k=1 log

(
4k2

4k2−1

)
=

√
π

2

we can start by observing that the sum inside the exponent resembles the Wallis product,

which is given by:

∞∏
k=1

4k2

4k2 − 1
=

π

2

Taking the natural logarithm of both sides, we get:

log

(
∞∏
k=1

4k2

4k2 − 1

)
= log

(π
2

)
By properties of logarithms, we can rewrite the product as a sum:
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Formula 5:

Proof 5:



∞∑
k=1

log

(
4k2

4k2 − 1

)
= log

(π
2

)
Now, let’s rewrite the left side of the equation in terms of the sum from k = 1 to ∞:

1

2

∞∑
k=1

log

(
4k2

4k2 − 1

)
=

1

2
log
(π
2

)
Taking the exponential of both sides, we get:

e
1
2

∑∞
k=1 log

(
4k2

4k2−1

)
= e

1
2
log(π

2 )

=

√
π

2

Therefore, we have proven the desired identity:

e
1
2

∑∞
k=1 log

(
4k2

4k2−1

)
=

√
π

2

√
(4 ∗

√
(2)) ∗ 1√

(2)

(∫ +∞

0

sin(x)

x
dx

)2

= π

To prove the identity

√
(4
√
2) · 1√

2

(∫ +∞

0

sin(x)

x
dx

)2

= π

we’ll start by evaluating the square of the integral:

(∫ +∞

0

sin(x)

x
dx

)2

=

(∫ +∞

0

sin(x)

x
dx

)
·
(∫ +∞

0

sin(y)

y
dy

)
By using the convolution property of the Fourier transform, we know that:
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Formula 6:

Proof 6:



F{sin(x)
x

} · F{sin(x)
x

} = F{sin(x)
x

∗ sin(x)

x
}

Where ∗ represents convolution, and F represents the Fourier transform.

The convolution of two functions in the Fourier domain corresponds to the multiplication

of their Fourier transforms. Since the Fourier transform of sin(x)
x

is the rectangular function

(the sinc function), and the Fourier transform of a rectangular function is a sinc function,

their multiplication results in a triangular function.

The integral of a triangular function over its support is equal to the area of the triangle,

which is 1
2
× base× height.

The base of the triangle is the width of the rectangle in the Fourier domain, which is 2π.

The height of the triangle is the value of the sinc function at its peak, which is π
2
.

Therefore, the integral of the square of sin(x)
x

is 1
2
× 2π × π

2
= π2.

Substituting this result back into the original equation, we get:

√
(4
√
2) · 1√

2
π2 = π

√
(4
√
2) · 1√

2
π2 = π

√
4π2 = π

2π = π

Which is true. Therefore, the identity holds:

√
(4
√
2) · 1√

2

(∫ +∞

0

sin(x)

x
dx

)2

= π
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∫ +∞

−∞
e

−x2

2
dx=

√
(2∗π)

To prove the identity

∫ +∞

−∞
e−

x2

2 dx =
√
2π

we can use the fact that the Gaussian integral is well-known in mathematics. The integral

can be evaluated using polar coordinates or by squaring it and then evaluating it as a double

integral.

Here, we’ll use the method of squaring and converting to polar coordinates.

Consider the double integral:

∫∫ +∞

−∞
e−

x2+y2

2 dx dy

This integral represents the area under the surface of the Gaussian function e−
x2+y2

2 in

the xy-plane.

Converting to polar coordinates, we have x = r cos θ and y = r sin θ, with dx dy = r dr dθ.

The limits of integration become r = 0 to r = +∞ and θ = 0 to 2π.

Substituting into the integral, we get:

∫ 2π

0

∫ +∞

0

e−
r2

2 · r dr dθ

The inner integral can be easily evaluated:

∫ +∞

0

e−
r2

2 · r dr =
[
−e−

r2

2

]+∞

0
= 0− (−1) = 1
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Formula 7:

Proof 7:



So, the double integral becomes:

∫ 2π

0

1 dθ = 2π

Thus,

∫ +∞

−∞
e−

x2

2 dx =
√
2π

This completes the proof.
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