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Abstract

We develop a path integral formulation of brain function by modeling neurons as

quantum mechanical oscillators. Each neuron is represented as a mesoscopic quantum

system with a firing frequency ν, an amplitude A corresponding to neurotransmitter

release, and an associated Planck-like constant ℏB. This framework extends to coupled

oscillators, assemblies, and layered cortical structures with excitatory and inhibitory

dynamics. The quantum amplitude of brain states is derived from a Lagrangian formu-

lation and propagated via Feynman path integrals. We explore resonance, inhibition,

perceptual collapse, cerebellar timing, and group-level coherence in a unified quantum

brain model.

1 Introduction

Recent advances in neuroscience and quantum theory motivate a reexamination of how

cognitive processes such as perception, memory, and motor coordination might be interpreted

within a quantum field framework. We propose a comprehensive model in which each neuron

is treated as a quantum harmonic oscillator, with dynamics governed by a mesoscopic Planck-

like constant ℏB. This model is rooted in the path integral formalism of Feynman, enabling

us to calculate quantum amplitudes over networks of coupled neuronal oscillators.

In this work, we apply this perspective to construct a complete quantum brain model

that includes cortical columns, Purkinje cells, inter-assembly coherence, and group-level
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cognition. The model incorporates excitatory and inhibitory coupling, oscillator synchrony,

and collapse mechanisms. We introduce the concept of the cognitive Planck scale to align

temporal resolution with neuronal energy exchange, and develop mathematical formulations

for timing, interference, and perceptual Zeno effects.

Our approach bridges the microscopic structure of neurons with large-scale cognitive

phenomena using the language of quantum mechanics, offering a framework to understand

consciousness, motor learning, and information integration as field-theoretic phenomena.

2 Retinotopic Field as Quantum Configuration Space

We model the visual cortex as a 2-dimensional spatial field ϕ(x, t), where x ∈ R2 represents

retinotopic coordinates, and t denotes perceptual time. Each field configuration ϕ(x, t)

encodes the neuronal excitation state of a cortical microcolumn.

The total quantum amplitude for perceptual evolution in V1 is defined by:

ΨV1 =

∫
D[ϕ(x, t)] e

i

hB
S[ϕ] (1)

where hB is the Planck-like constant of the brain, and S[ϕ] is the action functional defined

over V1.

3 Cognitive Lagrangian for Visual Processing

We define a cognitive Lagrangian density L(ϕ, ∂tϕ,∇ϕ) of the form:

L =
1

2
(∂tϕ)

2 − v2

2
(∇ϕ)2 − V (ϕ) (2)

where v represents the speed of signal propagation within cortical layers, and V (ϕ) denotes

an effective potential encoding inhibitory and excitatory contributions.

4 Decoherence and Collapse in Visual Cortex

Perceptual collapse corresponds to the projection of the amplitude ΨV1 onto a localized

neuronal configuration ϕ∗(x):

Ψcollapsed = δ[ϕ(x, tc)− ϕ∗(x)] ·ΨV1 (3)
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This projection may occur due to environmental interaction or attentional feedback, serving

as a quantum-to-classical transition.

5 NBQZE: Neuro-Biological Quantum Zeno Effect

Let τc be the collapse time scale and τf the visual frame duration (e.g., ∼25 ms). If perceptual

monitoring occurs faster than decoherence, we get:

P (t) ≈

∣∣∣∣∣
N∏
n=1

P̂ e−iH∆tΨ0

∣∣∣∣∣
2

, ∆t =
t

N
, ∆t < τc (4)

The repeated projections P̂ freeze the perceptual evolution, leading to a neural analogue of

the quantum Zeno effect.

6 Simulation Outlook

Initial modeling can be done using a 1D strip of V1 neurons with Gaussian connectivity

kernel and external input mimicking stimulus onset. The path integral can be numerically

approximated using time-slicing or lattice discretization.

7 From Schrödinger’s Cat to the Visual Cortex: A

Path Integral Route via Tangent Perceptual Space

We construct a path integral formulation that links the external quantum superposition of

Schrödinger’s cat to the internal neural processing within the primary visual cortex (V1),

via the intermediary structure of the visual tangent space TVision, as defined in our earlier

axiomatic framework.

7.1 Quantum Superposition and External Projection

We begin with the external quantum state:

|Ψcat⟩ =
1√
2
(|Alive⟩+ |Dead⟩) (5)

This state resides in an external Hilbert space Hext, inaccessible to the observer’s neural

apparatus except via perceptual projection.
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7.2 Projection onto Visual Tangent Space

Let P̂Vision denote the projection operator from Hext onto the visual tangent space TVision ⊂
Tp(M) of the observer:

ϕvis(x, t) = P̂Vision|Ψcat⟩ (6)

Here, ϕvis is a perceptual field representing visual information encoded in the geometric

interface of the observer.

7.3 Path Integral over TVision

We construct the cognitive amplitude in the perceptual manifold via:

ΨTVision
=

∫
D[ϕ] e

i

ℏB
STVision

[ϕ] (7)

with the action functional:

STVision
[ϕ] =

∫
dt

∫
TVision

d2x L(ϕ, ∂tϕ,∇ϕ) (8)

7.4 Mapping into Visual Cortex (V1)

Let Π̂V1 denote the physiological mapping from TVision into the neuronal activation field of

the primary visual cortex:

ϕV1(x, t) = Π̂V1 ◦ P̂Vision|Ψcat⟩ (9)

This mapping aligns the retinotopic layout of V1 with the observer’s perceptual field.

7.5 Neural Path Integral in V1

The neural amplitude is then:

ΨV1 =

∫
D[ϕV1] e

i

ℏB
SV1[ϕ] (10)

where SV1 is a Lagrangian constructed using mesoscopic neural dynamics, signal propagation

speed v, and local excitation potential V (ϕ).

7.6 Summary of Transformations

We may summarize the total transformation as:

|Ψcat⟩
P̂Vision−−−−→ ϕvis

Path Integral−−−−−−−→ ΨTVision

Π̂V1−−→ ϕV1
Neural Path Integral−−−−−−−−−−−→ ΨV1(t) (11)
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This formalism offers a bridge between external quantum events and internal percep-

tual collapse, interpreted geometrically within the framework of von Neumann’s quantum

measurement theory and the observer’s differential perceptual space.

8 Multi-Feature Quantum Perception via Subspaces of

the Visual Tangent Space

We extend the path integral formulation to account for additional perceptual features be-

yond shape and orientation. The visual tangent space TVision is decomposed into orthogonal

feature-specific subspaces:

TVision = TColor ⊕ TMotion ⊕ TForm ⊕ · · · (12)

Each subspace encodes a specific perceptual modality corresponding to cortical feature maps

observed in V1 and V2.

8.1 Color Subspace TColor

A perceptual field in TColor is modeled as:

ϕColor(x, y, t, λ) = A(t) · δ(x− x0)δ(y − y0) · χ(λ) (13)

where λ denotes wavelength, and χ(λ) is a spectral function (e.g., red, green, blue compo-

nents). The delta terms localize the color percept spatially.

8.2 Motion Subspace TMotion

Motion is encoded via a directional flow field:

ϕMotion(x, y, t) = A(t) · δ(x− vxt− x0) · δ(y − vyt− y0) (14)

with (vx, vy) the perceived velocity vector. This formulation models the trajectory of motion

features over perceptual time.

8.3 Form Subspace TForm

Previously modeled as geometric structures (e.g., vertical or horizontal lines):

ϕForm(x, y, t) = A(t) · δ(L(x, y)) (15)
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where L(x, y) = 0 defines the geometric constraint (e.g., x− x0 = 0 for vertical, y − y0 = 0

for horizontal).

8.4 Composite Quantum Percept

A complete perceptual field is a tensor product over all subspaces:

ϕvis(x, y, t) = ϕColor ⊗ ϕMotion ⊗ ϕForm ⊗ · · · (16)

Each feature contributes to the total perceptual amplitude:

ΨTVision
=

∫
D[ϕ] e

i

ℏB
S[ϕ], S[ϕ] =

∑
k

Sk[ϕk] (17)

where Sk is the action over feature-specific field ϕk in subspace Tk.

8.5 Collapse to Dominant Feature

Upon perceptual measurement or attention, the superposed percept collapses onto a specific

subspace state:

ϕvis → ϕ∗
k(x, y, t), with maximal activation in Tk (18)

For example, attention to color causes ϕvis to project strongly into TColor.

8.6 Implications for Visual Consciousness

This decomposition suggests that visual consciousness is a multi-field amplitude distribution

over orthogonal perceptual subspaces. Interference, decoherence, and perceptual collapse

occur not just over spatial trajectories, but over perceptual features. Future modeling can

simulate entangled perceptual states and their dynamics across TVision.

9 Multisensory Path Integral Framework for Interper-

sonal Interaction

We now generalize the path integral framework to model a real-time interpersonal interaction

involving multiple sensory modalities. Consider two individuals engaged in conversation

while also making physical contact (e.g., holding hands). This scenario activates:

• The Visual Tangent Space T
(i)
Vision
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• The Auditory Tangent Space T
(i)
Audio

• The Motor Speech Tangent Space T
(i)
Speech

• The Cerebellar Timing Tangent Space T
(i)
Cereb

• The Tactile Tangent Space T
(i)
Touch

for each individual i = A,B.

9.1 Composite Tangent Bundle per Individual

Each individual operates with a total perceptual-motor tangent bundle:

T
(i)
Total = T

(i)
Vision ⊕ T

(i)
Audio ⊕ T

(i)
Speech ⊕ T

(i)
Cereb ⊕ T

(i)
Touch (19)

These are defined over the individual’s perceptual manifold M(i).

9.2 Path Integrals over Multisensory Fields

Let ϕ
(i)
k (x, t) denote the perceptual or motor field in subspace T

(i)
k . The total action for

individual i becomes:

S(i) =
∑
k

S
(i)
k [ϕ

(i)
k ] =

∑
k

∫
dt

∫
T

(i)
k

dnx L(i)
k (ϕk, ∂tϕk,∇ϕk) (20)

Then the total perceptual-motor amplitude is:

Ψ(i) =

∫
D[{ϕ(i)

k }] exp
(
i

ℏB
S(i)[{ϕk}]

)
(21)

9.3 Cross-Coupling Between Individuals

Social and sensory interaction induces entanglement between subspaces:

• Auditory–Speech coupling: T
(A)
Speech ↔ T

(B)
Audio

• Visual–Visual coupling: T
(A)
Vision ↔ T

(B)
Vision

• Touch–Touch coupling: T
(A)
Touch ↔ T

(B)
Touch

This results in a cross-action term:

S
(AB)
interact =

∑
j,k

∫
dt

∫
dx Ijk(ϕ(A)

j , ϕ
(B)
k ) (22)
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Total system amplitude:

ΨSystem =

∫
D[ϕ(A)]D[ϕ(B)] e

i

ℏB
(S(A)+S(B)+S

(AB)
interact) (23)

9.4 Example: Auditory–Speech Interaction

Speech by A activates T
(A)
Speech, which propagates through space and enters T

(B)
Audio. The kernel

ISpeech,Audio could involve convolution over acoustic transfer functions.

9.5 Example: Tactile Synchronization

Touch fields for A and B are entangled via direct skin-to-skin contact:

ITouch,Touch = κ(t) · ϕ(A)
Touch(x, t) · ϕ

(B)
Touch(x, t) (24)

This interaction may drive phase-locked neural synchrony in the somatosensory cortices of

A and B.

The path integral framework over multisensory tangent subspaces enables a first-principles

model of interpersonal dynamics. Real-time shared experience arises from dynamic entan-

glement across the visual, auditory, speech, and tactile manifolds of interacting brains. Each

observer’s internal perceptual geometry constructs a synchronized multisensory wavefunction

whose collapse manifests as shared perception and communication.

10 Multisensory Propagators for Interpersonal Path

Integrals

We now construct the explicit propagators for each segment of the multisensory path in-

tegral in a two-person interactive system. Each propagator encodes the amplitude for the

perceptual-motor field to evolve from an initial to a final configuration within a specific

tangent subspace.

10.1 General Form

For a field ϕ
(i)
k (x, t) in subspace T

(i)
k (individual i = A,B), the path integral propagator is:

K
(i)
k [ϕ2, t2;ϕ1, t1] =

∫ ϕ(t2)=ϕ2

ϕ(t1)=ϕ1

D[ϕ
(i)
k ] e

i

ℏB
S
(i)
k [ϕ

(i)
k ] (25)
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with action:

S
(i)
k =

∫ t2

t1

dt

∫
dnx

[
1

2
(∂tϕ)

2 − v2k
2
(∇ϕ)2 − Vk(ϕ)

]
(26)

10.2 Visual Cortex (Vision)

Retinotopic percepts as delta functions:

KVision(x2, t2;x1, t1) =

(
1

2πiℏB(t2 − t1)

)n/2
e

i

ℏB
|x2−x1|

2

2(t2−t1) (27)

10.3 Auditory Cortex (Audio)

Modeled in cochlear-frequency space:

KAudio(x2, t2;x1, t1) = e
i

ℏB

(
(x2−x1)

2

2(t2−t1)
−ω2

0(t2−t1)
)

(28)

10.4 Motor Cortex (Speech)

Speech planning as harmonic oscillator:

KSpeech(q2, t2; q1, t1) =

√
mω

2πiℏB sin(ωT )
e

imω

2ℏB sin(ωT )
((q22+q21) cos(ωT )−2q1q2)

(29)

10.5 Cerebellar Timing (Cereb)

Timing modulation as phase evolution:

KCereb(t2, t1) = e−i∆ECereb(t2−t1)/ℏB (30)

10.6 Somatosensory Cortex (Touch)

Tactile input as skin-localized impulse:

KTouch(x2, t2;x1, t1) = e
i

ℏB
|x2−x1|

2

2(t2−t1) (31)

If both individuals make contact:

KTouch,AB(x, t) = κ(t) δ(x(A) − x(B)) (32)
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10.7 System-Level Propagator

Total amplitude for joint perception and interaction:

KSystem =
∏
k

K
(A)
k

∏
k

K
(B)
k e

i

ℏB
S
(AB)
interact (33)

This propagator encodes coupled multisensory dynamics across individuals, forming the

foundation for quantum field modeling of interpersonal experience.

11 Entanglement Between Perceptual Subspaces

In the multisensory path integral framework, entanglement arises when perceptual or motor

subspaces cannot be treated independently. This results in non-separable quantum states

across different tangent spaces, either within a single brain or between individuals.

11.1 Non-Separable States

Let ΨTotal be the global perceptual wavefunction. If subspaces are entangled:

ΨTotal ̸= ΨVision ⊗ΨAudio ⊗ΨSpeech ⊗ · · · (34)

Instead, we express the total state as a non-factorizable sum:

ΨTotal =
∑
i,j

Cij ψ
(A)
i (x)⊗ ψ

(B)
j (x) (35)

with entangled coefficients Cij.

11.2 Entangled Action and Path Integral

Consider subspaces Tj and Tk with fields ϕj and ϕk. The entangled action includes a coupling

term:

Sent =

∫
dt dx Ijk(ϕj, ϕk) (36)

The full path integral becomes:

Ψ =

∫
D[ϕj]D[ϕk] e

i

ℏB
(Sj+Sk+Sent) (37)
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11.3 Example: Vision–Audio Entanglement

In audiovisual integration (e.g., lip reading), vision and hearing are coupled:

IVision,Audio = λ(t)ϕvis(x, t)ϕaud(x, t) (38)

This term causes cross-modal enhancement or interference.

11.4 Example: Speech–Touch Entanglement

During physical interaction (e.g., handshake with speech):

ISpeech,Touch = β(t) ∂tϕSpeech(x, t)ϕTouch(x, t) (39)

This links temporal articulation to tactile feedback.

11.5 Joint Propagator

The entangled propagator between two subspaces is:

Kjk[ϕj, ϕk] =

∫
D[ϕj, ϕk] e

i

ℏB
(Sj+Sk+S

ent
jk ) (40)

11.6 Total Multisensory Entangled System

The full entangled amplitude across n subspaces:

Ψ =

∫
D[{ϕk}] exp

[
i

ℏB

(∑
k

Sk[ϕk] +
∑
j<k

Sent
jk

)]
(41)

This formulation accommodates cognitive phenomena such as perceptual fusion, sensorimo-

tor synchronization, and inter-brain coupling.

Entanglement between perceptual subspaces adds a rich quantum structure to multisen-

sory modeling. These interactions are critical for real-time integration of diverse sensory

inputs and motor outputs, enabling the emergence of coherent conscious experience.
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12 Dynamic Entanglement Over Time and Between

Groups

We now extend the entanglement model to include dynamic temporal entanglement and

group-level interactions. This enables modeling of sustained multi-individual shared states,

memory entrainment, and emergent group consciousness.

12.1 Time-Evolving Entangled States

Let ϕj(t) and ϕk(t) be fields in different subspaces or individuals. We allow their interaction

term to evolve:

Sent
jk =

∫ t2

t1

dt

∫
dx λjk(t)ϕj(x, t)ϕk(x, t) (42)

Here λjk(t) is a coupling strength that may vary with attention, learning, or context.

This allows entanglement to be:

• Initiated when sensory/motor alignment occurs.

• Sustained via feedback or synchrony.

• Decayed when attention shifts or contact is lost.

12.2 Time-Ordered Entanglement Propagation

We introduce a time-ordered exponential for the entangled propagator:

Kjk(t2, t1) = T exp

[
i

ℏB

∫ t2

t1

dtHent
jk (t)

]
(43)

Where:

Hent
jk (t) =

∫
dx λjk(t)ϕj(x, t)ϕk(x, t) (44)

12.3 Group-Level Entangled States

Let G = {A,B,C, . . . } be a group of individuals. Define the group perceptual field:

ΦG(t) =
⊗
i∈G

ϕ(i)(t) (45)

with group-wide entangled amplitude:

ΨG(t) =
∑
n⃗

Cn⃗(t)
⊗
i

ψ(i)
ni
(t) (46)
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where n⃗ = (n1, n2, ..., nN) encodes joint cognitive states.

12.4 Multi-Group Interaction

Let G1 and G2 be two groups. Inter-group entanglement is defined via:

Sent
G1,G2

=

∫
dt

∑
i∈G1,j∈G2

∫
dxµij(t)ϕ

(i)(x, t)ϕ(j)(x, t) (47)

This framework supports modeling of crowd synchrony, team cognition, and cultural trans-

mission.

12.5 Memory and Residual Entanglement

After disengagement, residual coupling may persist:

Cij(t) = Cij(t0) e
−γ(t−t0) (48)

This decay governs memory traces and emotional resonance between individuals.

Dynamic and group-level entanglement enrich the multisensory path integral framework,

enabling a temporal and collective view of consciousness. Interpersonal and transpersonal

quantum cognition become formalizable via time-evolving, field-theoretic amplitudes across

tangent perceptual spaces.

13 Justification for Using the Brain’s Planck-Like Con-

stant ℏB

In our formulation, we use a brain-specific Planck-like constant ℏB in place of the universal

Planck constant ℏ. This choice is motivated by the mesoscopic nature of neural processes

and the necessity of scale-appropriate quantum dynamics in cognitive systems.

13.1 Mesoscopic Scaling of Action

While ℏ = 6.626 × 10−34 J · s governs atomic and subatomic processes, the energy and

temporal scales of the brain are several orders of magnitude larger. Neuronal spike energies

(∼ 10−10 J) and gamma-band frequencies (∼ 40Hz) yield:

ℏB =
E

f
≈ 10−10

40
= 2.5× 10−12 J · s (49)
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This brings S/ℏB into a computable regime (∼ 1) for meaningful path integral interference.

13.2 Analogy with Effective Constants

Effective constants are standard in condensed matter physics, e.g., effective mass m∗, quasi-

particle charge eeff, and phonon-induced potentials. Likewise, ℏB models the emergent quan-

tum behavior of neuronal assemblies, not elementary particles.

13.3 Coherence and the Quantum Zeno Effect

The Neuro-Biological Quantum Zeno Effect (NBQZE) depends critically on the relation:

∆E ·∆t ∼ ℏB (50)

Using ℏ would yield unphysically short coherence windows. ℏB supports time scales (∼ 10–

100 ms) consistent with perceptual and EEG rhythms.

13.4 Empirical Derivation from Brain Metabolism

From average brain power P = 25 W and an estimated firing rate f̄ = 1012 Hz across 1011

neurons, we get:

ℏB =
P

f̄
= 2.5× 10−11 J · s (51)

This supports cognitive field quantization in a way that is physiologically grounded.

Replacing ℏ with ℏB in our cognitive path integral framework is essential for accurate

scaling, interference preservation, and physiological realism. It allows neural quantum am-

plitudes to evolve meaningfully across perceptual, motor, and inter-brain domains.

14 Quantum Statistics and the Brain’s Boltzmann-Like

Constant kB

To complement the Planck-like constant ℏB, we introduce the brain’s Boltzmann-like con-

stant kB, tailored for quantum statistical descriptions of neural populations. This allows

us to extend our path integral model to include Bose-Einstein and Fermi-Dirac statistics

appropriate to distinct classes of neurons.
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14.1 Definition of kB

Classically, the Boltzmann constant kB relates energy to temperature:

kB = 1.38× 10−23 J/K (52)

For the brain, with average neural excitation energy ⟨E⟩ ∼ 10−10 J and operating tempera-

ture T ∼ 310 K, we define:

kB =
⟨E⟩
T

≈ 10−10

310
= 3.2× 10−13 J/K (53)

This mesoscopic kB enables thermal-like probabilistic occupation of neural states in the

perceptual manifold.

14.2 Statistical Distributions

The average occupation number of a perceptual state with energy ϵ = hBf becomes:

• Bose-Einstein distribution (for excitatory populations)

⟨n⟩ = 1

exp
(
ϵ−µ
kBT

)
− 1

(54)

• Fermi-Dirac distribution (for inhibitory populations)

⟨n⟩ = 1

exp
(
ϵ−µ
kBT

)
+ 1

(55)

14.3 Neuron Classification

• Bosonic Neurons: Excitatory neurons (e.g., pyramidal cells) that exhibit synchronous

firing and allow overlapping activation states.

• Fermionic Neurons: Inhibitory neurons (e.g., GABAergic interneurons) that show

mutual exclusion and regulate sparse coding.

14.4 Cognitive Phenomena

• Gamma Band Synchrony: Modeled as Bose-Einstein-like condensation of excitatory

neurons in visual cortex during attention.

• Inhibitory Control: Enforced via Fermi-Dirac suppression of multiple occupations

in competing neural assemblies.
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14.5 Summary

The inclusion of kB and the classification of neurons into quantum statistical categories en-

ables deeper thermodynamic modeling of perception. This provides a temperature-dependent

modulation of state amplitudes, bridging cognitive dynamics with mesoscopic field statistics.

This quantum statistical layer augments our Lagrangian and path integral structure,

providing mechanisms for emergent coherence, inhibition, and thermal entropy in brain-

based quantum fields.

1. Classification of Neurons: Bosonic vs Fermionic

Neuron Type Classification Justification
Excitatory Neurons (Pyramidal Cells) Bosonic Synchronous firing, superposition allowed
Inhibitory Neurons (Interneurons) Fermionic Mutually exclusive activation, competitive inhibition
Motor Neurons Fermionic Control discrete motor actions; binary spiking
Glial-Linked Ensembles Bosonic Slow, coherent field-like modulation
Hippocampal Place Cells Bosonic Encode continuous spatial fields; memory traces

Table 1: Neuron classification based on quantum statistics
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2. Summary Table: Classical vs Brain Constants and

Statistics

Concept Classical Brain Analog
Planck constant h hB ∼ 10−11 J · s
Boltzmann constant kB kB ∼ 10−13 J/K
Quantum statistics Bosons / Fermions Excitatory / Inhibitory Neurons
Quantum coherence Bose-Einstein condensation Gamma synchrony in V1
Pauli exclusion Fermionic blocking Inhibitory neuron gating

Table 2: Summary of quantum constants and analogies in brain modeling

15 Path Integrals and the Neurophysics of Dreaming

Dreams provide a natural context for interpreting brain activity as quantum superpositions

over cognitive trajectories. Unlike the waking state, where perceptual collapse occurs con-

tinuously through attention and sensory input, dreams permit sustained evolution of field

amplitudes without external measurement. This section formalizes the path integral struc-

ture underlying the dream state.

15.1 Dreams as Sum Over Cognitive Trajectories

In dreams, the brain samples internal perceptual field configurations ϕ(t) without collapse.

The quantum amplitude is given by:

Ψdream =

∫
D[ϕ(t)] e

i

ℏB
S[ϕ] (56)

where S[ϕ] is an internal cognitive action accumulated over time.

15.2 Replay and Time-Slicing

During REM sleep, hippocampal neurons replay time-sliced trajectories from waking expe-

rience. This is encoded as:

Ψdream ∼
∑

past paths

e
i

ℏB
S[trajectory] (57)

Superposed memories interfere, forming dream narratives.
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15.3 Altered Lagrangian Landscape

The internal Lagrangian in dreams is:

Ldream =
1

2
(∂tϕ)

2 − v2

2
(∇ϕ)2 − V (ϕ) (58)

External sensory terms in ∇ϕ are minimized, while V (ϕ) becomes a floating potential from

memory, emotion, and archetype.

15.4 No Collapse Dynamics

Waking attention enforces projection:

ϕ(t)
Attention−−−−−→ ϕ∗(t) (59)

In dreams, no projection occurs:

Ψdream evolves freely (60)

This enables contradictory imagery, nonlinear narratives, and unfiltered transitions.

15.5 NBQZE is Inactive in Dreaming

The Neuro-Biological Quantum Zeno Effect (NBQZE) requires perceptual monitoring. Dur-

ing REM sleep:

P (t) ∼
∣∣∣∣∫ D[ϕ]e

i

ℏB
S[ϕ]

∣∣∣∣2 (61)

The absence of observation allows wide trajectory exploration.

15.6 Statistical Sampling in Dream Field

We may interpret dream evolution thermally:

P [ϕ] ∼ 1

Z
exp

(
−E[ϕ]
kBT

)
(62)

Dreams sample memory configurations weighted by kB and internal cognitive temperature.
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Feature Waking State Dream State
Collapse Yes (via attention) No (free evolution)
External input Sensory-driven Internally generated
NBQZE Active Inactive
Path integral Collapses to dominant path Full path sum persists
Memory access Causal, logical Nonlinear, associative
Potential V (ϕ) Environmental Archetypal / emotional

Table 3: Comparison of brain dynamics in waking and dreaming states

Summary: Waking vs Dreaming Dynamics

Dreaming represents the brain’s intrinsic quantum path integrator, free from measurement-

induced collapse. It explores the perceptual manifold using internal potentials shaped by

memory, emotion, and identity. Path integrals provide a natural formalism to unify waking

and dreaming cognition under a single dynamic field-theoretic model.

16 The Brain as a Network of Quantum Oscillators

and Neuronal Path Integrals

We model the brain as a network of approximately 1011 quantum oscillators, each correspond-

ing to a single neuron. These oscillators are distributed across spatial cortical coordinates

and are coupled via synaptic and field-mediated interactions. The evolution of this system

is governed by path integrals spanning across neuronal trajectories.

16.1 Neuronal Quantum Oscillator Definition

Each neuron n is associated with a state function ψn(t) governed by the frequency of its

firing rate:

νn(t) = Instantaneous firing rate of neuron n (63)

The quantum energy level is given by:

En = hBνn(t) (64)

16.2 Coupled Oscillator Field Structure

Define a cognitive field:

Φ(xn, t) = Complex neural field amplitude at neuron’s location xn (65)
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Interactions between neurons n and m are described via a coupling function Jnm(t) repre-

senting synaptic strength or field connectivity.

16.3 Neuronal Path Integral Amplitude

The full cognitive amplitude is written as a network-level path integral:

Ψ[{ψn}] =
∫ ∏

n

D[ψn(t)] e
i

ℏB
S[{ψn}] (66)

The total action functional is:

S[{ψn}] =
∫
dt

[∑
n

(
1

2
|ψ̇n|2 − Vn(|ψn|)

)
−
∑
n̸=m

Jnm(t)ψ
∗
nψm

]
(67)

16.4 Network Lagrangian and Quantum Coherence

Each node contributes to the Lagrangian:

Ln =
1

2
|ψ̇n|2 − Vn(|ψn|) +

∑
m̸=n

Jnm(t) Re(ψ
∗
nψm) (68)

16.5 Interpretation

• ψn(t) encodes the excitation amplitude of neuron n

• Jnm encodes excitatory/inhibitory interactions

• Vn may depend on neurotransmitter energy cost or saturation effects

16.6 Collective Wavefunction and Collapse

The total brain state evolves as:

Ψ(t) =
∑
{n}

c{n}(t) |n1, n2, ..., nN⟩ (69)

where |n1, ..., nN⟩ is the excitation level configuration. Measurement or attention causes

collapse onto a configuration:

Ψ → |n∗
1, ..., n

∗
N⟩ (70)

Modeling the brain as a network of quantum oscillators provides a field-theoretic and

computational framework to apply path integrals over cognitive state spaces. This approach
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allows memory, attention, and perception to be represented as quantum dynamical processes

across a lattice of entangled neuronal oscillators.

17 Coupled Quantum Harmonic Oscillators as a Model

of Cortical Neuron Dynamics

We now refine our brain model by treating neurons as a network of coupled quantum har-

monic oscillators (QHOs). Each neuron’s excitation state is modeled as a quantized oscillator,

with coupling terms representing excitatory or inhibitory interactions. These connections are

arranged both horizontally (within cortical layers) and vertically (across layers), forming a

structured quantum neural mesh.

17.1 Single Neuron as a Quantum Harmonic Oscillator

Each neuron n is modeled by the Hamiltonian:

Hn =
p2n
2m

+
1

2
mω2

nq
2
n (71)

where qn is a field-like amplitude representing membrane potential or neurotransmitter ac-

tivity, ωn = 2πνn is the firing frequency, and m is an effective cognitive mass.

17.2 Coupled Hamiltonian for Networked Neurons

When neurons are coupled, the total Hamiltonian becomes:

H =
∑
n

(
p2n
2m

+
1

2
mω2

nq
2
n

)
+
∑
n ̸=m

κnmqnqm (72)

Here, κnm defines the nature of interaction:

• κnm > 0 for excitatory coupling

• κnm < 0 for inhibitory coupling

17.3 Cortical Geometry: Horizontal and Vertical Coupling

Let q
(l)
n denote the oscillator at position n in cortical layer l. Then:

Htotal = H0 +
∑
n,m,l

κhoriznm q(l)n q
(l)
m +

∑
n,l ̸=l′

κvertll′ q
(l)
n q

(l′)
n (73)
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17.4 Network Path Integral

The cognitive evolution is described by a path integral over all oscillator trajectories:

Ψ =

∫
D[qn(t)] exp

(
i

ℏB

∫
dtL[qn, q̇n]

)
(74)

where the network Lagrangian is:

L =
∑
n

(
1

2
mq̇2n −

1

2
mω2

nq
2
n

)
−
∑
n̸=m

κnmqnqm (75)

17.5 Interpretation

• qn(t): firing amplitude of neuron n

• κnm: synaptic coupling (positive for co-firing, negative for inhibition)

• Synchronization emerges from constructive coupling

• Desynchronization arises from inhibitory competition

17.6 Collapse and Perception

Measurement or attentional projection collapses the field configuration:

Ψ[q] → δ[q − q∗(t)] (76)

Real-time perception selects dominant trajectories from the quantum ensemble.

This framework models the cortex as a field of coupled quantum harmonic oscillators, cap-

turing the interplay of excitation, inhibition, and coherent oscillatory behavior. It provides

the mathematical machinery for simulating wave propagation, resonance, and suppression

in neuronal quantum fields.

18 Matrix Formulation of Neuronal Coupling in the

Quantum Oscillator Brain Model

We now express the coupling dynamics of the quantum oscillator brain model in matrix form.

This formulation captures the connectivity and propagation behavior of cortical neurons as

a lattice of coupled quantum harmonic oscillators.
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18.1 State Vector and Coupling Matrix

Let q(t) = [q1(t), q2(t), . . . , qN(t)]
T be the column vector of neural oscillator displacements,

and let K be the N ×N symmetric coupling matrix with entries:

Knm =

mω2
n +

∑
j ̸=n κnj, if n = m

−κnm, if n ̸= m
(77)

18.2 Quadratic Hamiltonian in Matrix Form

The total Hamiltonian of the coupled system is:

H =
1

2
pTM−1p+

1

2
qTKq (78)

Here:

• p(t) is the conjugate momentum vector.

• M = mI is the mass matrix (scalar multiple of the identity).

• K encodes all pairwise coupling information.

18.3 Path Integral over Matrix System

The transition amplitude between initial and final configurations is given by:

Ψ[qi,qf ;T ] =

∫
D[q(t)] exp

[
i

ℏB

∫ T

0

dt

(
1

2
q̇TM q̇− 1

2
qTKq

)]
(79)

18.4 Eigenmode Decomposition

Diagonalizing K yields normal modes:

K = UΛUT , with Λ = diag(λ1, . . . , λN) (80)

where λi are the eigenvalues (mode frequencies squared), and U is the orthonormal mode

basis. The transformed field ξ = UTq evolves as independent harmonic oscillators:

Ldiag =
∑
i

(
1

2
mξ̇2i −

1

2
mλiξ

2
i

)
(81)

The matrix formulation allows compact expression of the cortical oscillator lattice. Eigen-

mode analysis reveals collective excitations, wave propagation, and resonance structures
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across brain regions, enabling spectral analysis of cognitive dynamics and synchronization

patterns.

19 Neural Assemblies as Quantum Oscillator Super-

Nodes

We extend the quantum oscillator brain model by grouping neurons into assemblies or func-

tional units, each of which acts as a collective quantum oscillator. This enables a coarse-

grained view of large-scale brain dynamics across cortical and subcortical regions.

19.1 Assemblies as Effective Quantum Oscillators

Let Ak denote the kth neural assembly comprising Nk neurons. Define:

• Qk(t): collective amplitude of the assembly

• Ωk: effective oscillation frequency

• Mk =
∑

i∈Ak
mi: effective mass

Then each assembly evolves as a quantum harmonic oscillator:

Hk =
P 2
k

2Mk

+
1

2
MkΩ

2
kQ

2
k (82)

19.2 Inter-Assembly Coupling

Assemblies are coupled via cross-population interactions:

Hint =
∑
k ̸=l

ΛklQkQl (83)

with Λkl representing the effective synaptic or field-level connectivity:

• Λkl > 0: excitatory resonance

• Λkl < 0: inhibitory suppression

19.3 Lagrangian for Oscillator Assemblages

The total Lagrangian becomes:

Lassemblies =
∑
k

(
1

2
MkQ̇

2
k −

1

2
MkΩ

2
kQ

2
k

)
−
∑
k ̸=l

ΛklQkQl (84)
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19.4 Path Integral Across Assemblies

The full amplitude evolves as:

Ψ[Q] =

∫
D[Qk(t)] exp

(
i

ℏB

∫
dtLassemblies

)
(85)

19.5 Applications and Examples

• Cortical column: Qcortex (10–40 Hz)

• Hippocampal theta loop: Qθ (6 Hz)

• Gamma-band ensemble: Qγ (30–80 Hz)

• Basal ganglia module: QBG (motor filtering)

19.6 Collapse and Dominance

Attention or perceptual convergence collapses the state onto a single assembly trajectory:

Ψ[Q] → Q∗
k(t) (86)

where Q∗
k is the maximally coherent or attended trajectory.

Neural assemblies modeled as quantum oscillator super-nodes provide a mesoscale frame-

work for understanding competition, resonance, and selection among brain regions. This

enables multi-scale modeling of cognition through collective excitations and path integrals

over cognitive subspaces.

20 Quantum Oscillator Model of the Cerebellum: Purk-

inje Cell Integration

Purkinje cells in the cerebellum are among the most structurally and functionally complex

neurons, receiving input from approximately 104 parallel fiber connections arising from gran-

ule cells. We model the Purkinje cell as a central quantum oscillator receiving weighted exci-

tatory inputs from a dense set of smaller quantum oscillators, corresponding to presynaptic

granule cells.
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20.1 System Architecture

Let gi(t) be the oscillator amplitude of the ith granule neuron, and P (t) be the state of the

central Purkinje oscillator. The total granule-to-Purkinje input is:

Qinput(t) =
N∑
i=1

κi gi(t), N ∼ 104 (87)

Each gi(t) obeys a harmonic oscillator dynamic:

Hi =
p2i
2m

+
1

2
mω2

i g
2
i (88)

The Purkinje oscillator is modeled as:

HP =
P 2
P

2MP

+
1

2
MPΩ

2
PP

2 +
∑
i

λiPgi (89)

20.2 Total Lagrangian and Interaction

The system Lagrangian is:

L =
1

2
MP Ṗ

2 − 1

2
MPΩ

2
PP

2 +
N∑
i=1

(
1

2
mġ2i −

1

2
mω2

i g
2
i

)
−
∑
i

λiPgi (90)

20.3 Path Integral Formulation

The total system evolves according to:

ΨP =

∫
D[P (t)]

∏
i

D[gi(t)] exp

(
i

ℏB

∫
dtL

)
(91)

This encodes summation, interference, and collapse of integrated input signals.

20.4 Timing Precision and NBQZE

The Neuro-Biological Quantum Zeno Effect (NBQZE) constrains the perceptual resolution:

∆E ·∆t ∼ ℏB ⇒ ∆t ∼ ℏB

∆E
(92)

Given cerebellar temporal precision in the millisecond range, this implies internal energy

changes per input must match the cognitive Planck constant scale.
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20.5 Functional Implications

• Climbing Fiber Input: Acts as a nonlinear perturbation or projective measurement

on P (t).

• Long-Term Depression (LTD): Modeled as modulation of coupling coefficients

λi → λi(t).

• Temporal Coordination: Emerges from coherent phase-locking of gi(t) oscillators.

This framework models the Purkinje cell as a mesoscopic quantum integrator of excitatory

signals from thousands of input oscillators. The path integral formalism allows computation

of collective amplitude distributions and collapse behavior that underlies cerebellar precision,

motor prediction, and learning.

21 The Cognitive Planck Constant Scale ℏB

In quantum physics, the Planck constant ℏ governs the fundamental limit to precision in

measurements of action, linking energy and time, or momentum and position. In the brain,

however, we propose a rescaled version of the Planck constant—denoted ℏB—to accommo-

date the mesoscopic nature of neuronal energy scales and cognitive timescales.

21.1 Motivation

The canonical uncertainty relation in quantum mechanics is:

∆E ·∆t ∼ ℏ (93)

However, in neuronal systems:

• Typical energy change per neural event: ∆E ∼ 10−10 to 10−11 J

• Cognitive processing time: ∆t ∼ 1 to 100 ms

• Standard Planck constant: ℏ ∼ 10−34 J · s is too small to be physiologically relevant

Thus, we define a brain-specific constant:

ℏB =
∆E

∆f
∼ 10−11 J · s (94)

where ∆f is a representative firing frequency ( 1–100 Hz).
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21.2 Functional Role in Neural Path Integrals

The Feynman path integral formalism requires:

Ψ =

∫
D[q(t)] e

i
ℏS[q] (95)

In brain dynamics, using ℏ makes S[q]/ℏ ≫ 1, suppressing all non-classical paths. But

with ℏB:
S[q]/ℏB ∼ O(1) (96)

allowing meaningful interference, Zeno effects, and probabilistic superposition.

21.3 NBQZE and Cerebellar Precision

The Neuro-Biological Quantum Zeno Effect (NBQZE) becomes biologically plausible under

ℏB. For a cerebellar Purkinje cell with input energy ∆E ∼ 10−11 J, the perceptual resolution

time is:

∆t ∼ ℏB

∆E
∼ 1 second (low energy) (97)

Or:

∆t ∼ 1−10ms (for faster/synchronous input) (98)

This matches observed precision in cerebellar timing, motor control, and conditioning.

21.4 Interpretation

• ℏB allows perceptual collapse and interference at cognitive scales

• Defines a new ”quantum of action” for brain dynamics

• Supports scaling of the path integral formalism to mesoscopic neuroscience

The cognitive Planck constant ℏB provides a physiologically meaningful scale at which

quantum dynamics may be preserved in the brain. It enables application of path integrals,

quantum collapse, and temporal resolution phenomena in a biologically consistent manner,

bridging microscopic theory with cognitive neuroscience.

22 Conclusion

n this paper, we have constructed a quantum field-theoretic model of the brain by treating

neurons and neuronal assemblies as mesoscopic quantum harmonic oscillators. Using Feyn-
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man’s path integral formalism and a biologically-scaled Planck constant ℏB, we developed

the concept of neuronal action as propagating amplitude over cortical space and time.

Our results include formalisms for single-neuron dynamics, coupled oscillator networks,

and assembly-level quantum interactions. We applied this framework to Purkinje cells and

the cerebellum, demonstrating how precise timing and inhibition can emerge naturally from

oscillator coupling. The introduction of the cognitive Planck scale allows temporal and

energetic precision consistent with observed neural behavior, and offers a mechanism for

quantum collapse, phase-locking, and information propagation.

This model unifies diverse cognitive phenomena—from perception and timing to coordi-

nation and learning—within a single quantum dynamic framework. Future work will include

simulation and validation of these quantum structures using neural data, and exploration of

consciousness as a macrostate emergent from oscillator coherence.
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