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Abstract

Modern languages like Mojo strive to combine Python syntax compatibility with static, high-
performance execution. However, dynamic features such as eval()  and globals() ,
which involve runtime object creation, mutable scopes, and potential cyclic references, are
naturally at odds with a strictly static memory model. To address this challenge, this paper
proposes Selective GC Zoning, a strategy that isolates dynamic features within a
dedicated garbage-collected subspace (GC Zone), while preserving the static memory
model for the rest of the code. This design enables near-native performance for general
Mojo code while allowing selective Python compatibility for specific dynamic features. In
addition, we discuss object escape constraints between static and GC-managed regions,
concurrency scenarios, different GC algorithm choices, and future extensions of this
approach.

1. Introduction

Mojo is a modern language that inherits Python’s intuitive syntax while aiming for system-
level performance via static typing and AOT (Ahead-Of-Time) compilation [7]. However,
Pythonic features (e.g., eval() , globals() ) introduce dynamic object creation, mutable
namespaces, and potential cycles—incompatible with the deterministic memory
management typically found in static systems [1][9].

Selective GC Zoning addresses this tension by confining dynamic language constructs to
a limited scope. Specifically:

1. General Mojo code: Maintains static memory strategies (ownership, Arena/Rc,
compile-time checks).



This paper outlines the design, implementation considerations, and performance
implications of this approach.

2. Related Work

2.1 Memory Management in Existing Languages

2.2 Partial or Selective GC Concepts

3. Selective GC Zoning: Overview

3.1 Core Concept

2. GC Zone: Activated only when using dynamic constructs ( eval() , globals() ),
employing a specialized garbage collector within that zone.

3. Zone lifecycle: Once the dynamic operation completes, the zone and all its objects are
collected, preventing overhead from spreading into the static domain.

Python (CPython): Uses reference counting with a cycle-detecting garbage collector
[1].
Rust: Avoids GC by leveraging strict ownership and lifetime rules [2].

Swift: Uses ARC (Automatic Reference Counting) for class types [3].
JavaScript (V8): Employs full-heap GC, optimized by inline caching and hidden
classes [4].
C/C++ (via Boehm GC): Can use conservative GC [5], though it is not part of the
official language standard.

Some systems or embedded script engines isolate dynamic scripting components in a
separate memory region [6].
The core novelty here lies in applying a “zoned” GC approach to Mojo, so that dynamic
features operate in a delimited GC space, preserving the static domain for high-
performance AOT-compiled code.



3.2 Key Characteristics

4. Architecture & Implementation

4.1 Data Structures & Example Functions

Static Code Realm: Ordinary Mojo logic with Arena/Rc or ownership-based memory
management.

GC Zone: Dedicated region for eval() , globals() , and other dynamic needs,
featuring garbage collection.

1. Dedicated Heap (GcHeap): Allocations for dynamic objects are stored in a separate
GC-managed heap.

2. Restricted Scope: The GC Zone is initiated when calling eval()  or globals() ; it
remains active only for that scope.

3. Object Escape Prevention: A compiler-level mechanism ensures that objects from the
GC Zone cannot “leak” into the static domain in ways that violate memory safety.

4. Automatic Cleanup: When the zone concludes, a GC pass (Mark-and-Sweep or
RC+Cycle) reclaims the memory of the dynamically created objects.

[Static Code] -> [GC Zone (eval/globals)]
  | Arena/Rc,       | GcHeap, GcObject, 
  | Ownership        | cleanup on exit

struct GcZone:
    var heap: GcHeap
    var env: Dict[String, GcObject]

    fn eval(code: String) -> GcObject:
        // Internally parses the code and stores objects in GcHeap
        ...
        return result

    fn cleanup():
        // Trigger GC when the zone is no longer needed
        self.heap.collect_all()



Basic Example

In this snippet, static_function()  resides in Mojo’s static environment but uses eval()
to interpret a Python expression dynamically. The resulting object ( GcObject ) remains in
the GC Zone; only primitive data (like Int ) is extracted and passed back to static code,
preventing unsafe references to GC-managed data.

4.2 Escape Analysis & Compiler Enforcement

These constraints ensure that dynamic objects cannot persist beyond the lifetime of their
GC Zone, preserving the safety and predictability of the static code base.

4.3 Selecting a GC Algorithm

Within the GC Zone, there are two primary options:

Escape Analysis: At compile time, ensure that GC-managed objects do not leak into
the static domain in a way that would break static memory guarantees.

Primitive Extraction (Unwrapping): Methods like unwrap_int() , unwrap_string()
are used to retrieve only primitive values from GC objects.
Static ↔ GC Zone Interface: Strings, numbers, and booleans may be copied safely
from the GC zone; more complex data structures remain in the zone, or they become
invalid once the zone terminates.

1. Mark-and-Sweep
Pros: Straightforward handling of cycles, robust for arbitrary object graphs.

fn static_function() -> Int:
    let code = "3 + 4"  # A Python expression
    let zone = GcZone()
    let result_obj = zone.eval(code)
    let result_int = result_obj.unwrap_int()  # Safely extract an 
integer
    zone.cleanup()  # Cleanup once evaluation is done
    return result_int



If each call to eval()  yields only a small set of objects, Mark-and-Sweep may be
sufficient. In scenarios with numerous or long-lived objects within the GC Zone, RC+Cycle
might offer more responsive collection. The choice can be context-dependent and may
evolve as Mojo’s dynamic ecosystem matures.

5. Performance & Concurrency

5.1 Theoretical Performance Analysis

Let:

Then total GC overhead is:

Tgctotal≈n×tgc(o)T{\mathrm{gc_total}} \approx n \times t_{\mathrm{gc}}(o)

In most usage patterns, eval()  would be invoked relatively infrequently, and the number
of objects per invocation ( o ) would remain small. Thus, the overall GC overhead becomes
negligible relative to the rest of the static code’s execution. Selective GC Zoning localizes
garbage collection to specific dynamic tasks, safeguarding overall performance.

5.2 Simple Benchmark / Simulation Outline

Cons: Potential for noticeable pause times if the zone contains many objects.

2. Reference Counting + Cycle Detection
Pros: Reclaims unused objects promptly as reference counts drop.
Cons: Requires an additional cycle detection mechanism, as reference counting
alone cannot handle cycles.

n  = number of dynamic zone invocations (e.g., eval()  calls),
o  = average number of objects per zone,
t_gc(o)  = time to collect o  objects.

Scenario 1: 90% static code, 10% dynamic calls (short eval  scripts).
Scenario 2: 50% static code, 50% dynamic calls (larger scripts).



Metrics:

Even rudimentary tests can demonstrate that minimal eval()  usage leads to negligible
GC costs and that excessive or unplanned dynamic calls can indeed accumulate overhead.

5.3 Concurrency Considerations

If Mojo supports multithreading, handling concurrent accesses to a GC Zone poses
additional challenges:

This paper primarily focuses on a single-threaded environment, leaving parallel and
concurrent GC as a potential area for future exploration.

6. Zone Lifecycle & Reusability

6.1 Zone Lifecycle

6.2 Reusability & Nested Zones

GC time as a percentage of total runtime.

Frequency of GC triggers and memory usage patterns.
Performance degradation when n  or o  grow significantly.

Stop-the-world GC: Simplifies implementation but halts all threads while collection
occurs.

Parallel GC: Multiple threads may collect the GC Zone in parallel, requiring
synchronization mechanisms or advanced concurrent GC strategies.
Restricted concurrent eval: The language could forbid multiple threads from entering
the same GC Zone at once, thereby reducing complexity at the cost of reduced
parallelism.

1. Initialization: eval()  or globals()  call triggers the creation of a new GcZone.

2. Active Use: Objects are allocated, modified, or returned within the GC Zone.
3. Cleanup: At scope exit, the system calls cleanup() , performing a final GC pass.

4. Deactivation: The zone is fully released, returning control to static code.



7. Limitations & Future Work

8. Conclusion

Selective GC Zoning offers a practical way to integrate Python-like dynamic functionality
into the otherwise static, high-performance Mojo environment. By confining runtime-
evaluated code to a specialized GC subspace, the rest of Mojo retains static safety and
predictable performance. The incremental overhead applies only where dynamic behavior
is truly needed—aligning with the principle of “pay only for what you use.”

Our design illustrates how a low-level, static-oriented language can selectively
accommodate dynamic features without universally adopting a garbage-collected model.
Future research will explore concurrency support, nested or parallel GC Zones, and zone-
aware JIT optimizations to extend the approach to a broader set of use cases.

Immediate Destruction: A new GC Zone is created and destroyed for each eval() ,
which is straightforward but may become costly if eval()  is called very frequently.

Sticky/Long-lived Zone: The zone is kept active across multiple invocations,
potentially retaining objects between calls. This saves overhead on repeated creation
but can grow memory usage over time.
Nesting: One might call eval()  within another eval() , creating nested zones.
Managing multiple concurrent zones complicates lifetime tracking and garbage
collection, so an initial implementation might disallow or tightly restrict nesting.

1. DSL Restrictions: The dynamic subset for eval()  might omit certain Python features
(like async, closures) to reduce complexity.

2. GC Object Escape Analysis: Enforcing non-escape at compile time is critical for
safety but adds complexity to the language and runtime.

3. Parallel/Concurrent GC: This paper assumes single-threaded execution; parallel or
concurrent strategies will require additional mechanisms.

4. Multiple GC Zones: Handling inter-zone references or object exchange is a non-trivial
challenge for advanced usage scenarios.

5. Zone-Aware JIT: Future work could integrate JIT compilation strategies that optimize
code within the GC Zone.
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