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Abstract

We present a classical thermodynamic model of gravity based on the concept of negative heat
capacity. By treating a freely falling system as an entropically active object, we show that gravi-
tational acceleration emerges as a macroscopic entropy gradient, induced by internal heating and
driven by energy loss. Using a temperature field T (R) = GM

kBR
and a logarithmic entropy function

S(R), we recover Newton’s inverse-square law as a purely thermodynamic effect:

F = T (R) · dS
dR

= −GMm

R2
.

This model requires no curvature, no quantum fields, and no microscopic assumptions. It
complements Jacobson’s thermodynamic derivation and Verlinde’s entropic gravity, but remains
fully classical and accessible.

Placing this result into a broader framework, we propose that both gravity and quantum
measurement reflect a deeper thermodynamic structure: the global tendency of the universe toward
a normal (Gaussian) entropy distribution. While spacetime geometry expands toward equilibrium
(dS → 0), localized quantum information follows the opposite direction — toward entropy increase
(dS → 1).

Gravitation, motion, and measurement may thus be unified under a single principle: projection
into the thermodynamic structure of a Gaussian universe.

1 Introduction — Jacobson and Einstein in the Elevator

Einstein’s elevator is one of the most iconic thought experiments in physics. An observer in a sealed
elevator cannot distinguish whether they are experiencing gravitational attraction or constant accel-
eration. This led to the formulation of the equivalence principle, the cornerstone of general relativity.

But what happens if we introduce thermodynamics into this scenario?
Ted Jacobson, in his 1995 work, proposed that Einstein’s field equations could be derived from

thermodynamic principles — specifically, from the relationship between energy flux, entropy, and the
Unruh temperature experienced by accelerated observers. In this view, gravity is no longer fundamental
but emerges from underlying statistical mechanics. This thermodynamic perspective is further enriched
by works like Padmanabhan’s exploration of gravity as an emergent phenomenon tied to spacetime
thermodynamics [3], suggesting a broader statistical underpinning to gravitational interactions.

In this paper, we explore this idea in a purely classical setting, using the elevator not just as
a geometric frame but as a thermodynamic laboratory. We focus on a simple system: a compact
object (like a thermometer) freely falling in a gravitational field. While standard physics tells us that
such a system experiences no local force, we ask a different question: does it undergo an internal
thermodynamic response?

Surprisingly, if gravitational systems exhibit negative heat capacity — as observed in stellar clusters
— then energy loss during free fall could lead to an increase in internal temperature. This classical
heating effect, interpreted thermodynamically, can generate an entropy gradient that mimics gravita-
tional attraction.

Our goal is to reframe gravitational acceleration as a macroscopic entropic effect, without invoking
quantum fields, curvature, or holography. Instead, we derive Newton’s inverse-square law from a tem-
perature field and a logarithmic entropy function. The elevator becomes a tool not just for illustrating
geometry, but for understanding gravity as a thermodynamic phenomenon.
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2 Entropy and Equilibrium — Nature Seeks a Gaussian

In statistical mechanics, the concept of entropy plays a central role in determining the equilibrium
state of a system. According to Jaynes’ principle of maximum entropy, the most probable macroscopic
configuration is the one that maximizes entropy under given constraints.

When only the mean and variance of a distribution are fixed, the entropy-maximizing probability
distribution is the Gaussian:

P (x) =
1√
2πσ2

exp

(
− (x− µ)2

2σ2

)
.

This is not merely a mathematical convenience — it reflects a fundamental tendency of nature toward
equilibrium. The Gaussian is the most unbiased, least informative distribution consistent with the
given data.

In thermodynamics, this principle manifests in the tendency of isolated systems to evolve toward
states of maximal entropy. In gravitational systems, this leads to configurations where energy, tem-
perature, and entropy reach a stable distribution. For example, self-gravitating systems often exhibit
entropy maxima that are nonuniform, concentrated around a central mass.

In our setting, the gravitational field generated by a point mass M defines a radial potential that
shapes the entropy landscape of a falling test massm. As the test mass approachesM , it loses potential
energy — but in systems with negative heat capacity, this loss can be accompanied by an increase
in internal temperature. The resulting entropy gradient may thus be viewed as a manifestation of
nature’s drive toward a Gaussian-like equilibrium.

At the center of this distribution — conceptually near the gravitational source — the entropy
gradient vanishes:

dS

dR
= 0.

This condition defines local thermodynamic equilibrium, where no net entropy flow occurs. It also
marks the point of maximum probability in a statistical sense, analogous to the peak of a Gaussian.

Thus, the gravitational field can be interpreted as shaping a thermodynamic potential whose equi-
librium form reflects the same logic as the normal distribution: maximal entropy under constraint. In
this view, gravity is not just geometry — it is the statistical structure of equilibrium itself.

3 Negative Heat Capacity — Heating Up by Falling

In conventional thermodynamics, systems absorb heat to increase their temperature: positive heat
capacity. However, gravitationally bound systems often exhibit the opposite behavior — they become
hotter as they lose energy. This property is known as negative heat capacity and is a well-documented
feature in astrophysical systems such as star clusters.

To see this, consider a self-gravitating system in virial equilibrium. According to the virial theorem,
the total energy E satisfies:

2K + U = 0, ⇒ E = K + U = −K.

Assuming the kinetic energy is related to temperature via K = 3
2kBT , we find:

E = − 3
2kBT, ⇒ C =

dE

dT
= − 3

2kB < 0.

Thus, as the system loses energy (∆E < 0), its temperature increases (∆T > 0). This counterintuitive
response is a hallmark of systems governed by long-range interactions, like gravity.

We now apply this concept to a much simpler system: a compact test mass m falling toward a
central mass M . As m descends in the gravitational potential Φ(R) = −GM

R , it loses potential energy:

∆U = −∆Φ =
GMm

R
− GMm

R0
< 0.

In a system with effective negative heat capacity, this energy loss translates into a temperature increase:

∆T =
∆U

C
< 0 since C < 0,
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which yields ∆T > 0. The falling object heats up.
This behavior aligns with Jacobson’s thermodynamic framework, in which energy flux through a

local horizon gives rise to entropy change via the relation:

δQ = T dS.

In our case, δQ = −∆U represents the internalization of gravitational work into thermal energy. This
reinforces the idea that gravity produces a thermodynamic response, even in the absence of microscopic
structure.

The key point is this: energy loss in a gravitational field does not merely result in motion — it
results in heating. This heating, in turn, generates an entropy gradient that will form the basis for
deriving Newton’s law in the next section.

4 The Temperature Field of Gravity

To model the thermodynamic response of a test mass in a gravitational field, we introduce a classical
temperature field associated with the gravitational potential of a central mass M :

T (R) =
GM

kBR
.

This field is not derived from quantum field theory or tied to the Unruh effect — it is a classical ansatz
motivated by the idea that gravitational energy loss can manifest as internal heating in systems with
negative heat capacity.

The structure of T (R) reflects the inverse-square nature of the gravitational field. As the test mass
m approaches the central mass M , the effective temperature increases, consistent with the energy drop
∆U = −∆Φ and the corresponding temperature rise ∆T > 0 discussed earlier.

While unconventional, this temperature field serves as a useful tool to describe how gravitational
work may be internalized thermodynamically. It is analogous to the classical use of potential fields
in electrostatics: not physically observable in isolation, but instrumental in calculating gradients and
forces.

We emphasize that this T (R) is not a radiation temperature, nor does it rely on quantum mechanics.
It is defined operationally: if a compact thermometer falls freely towardM , and its internal temperature
rises due to gravitational work, then T (R) captures that rise as a function of position.

The functional form of T (R) also ensures dimensional consistency with entropy gradients of the
form dS/dR ∼ 1/R. When combined, these quantities yield a force expression with the correct units
and structure of Newton’s law — as we will demonstrate in the next section.

Thus, the temperature field T (R) provides a bridge between gravitational potential energy and
thermodynamic response. It allows us to rephrase gravitational attraction as a classical entropy-driven
process.

5 Entropy Gradient and the Gravitational Force

We now combine the temperature field introduced in the previous section with a classical entropy
function to derive the gravitational force as an entropic effect.

Let us define the entropy S associated with a test mass m at a distance R from the central mass
M as:

S(R) = kBm ln

(
R0

R

)
,

where R0 is a reference distance (e.g., the initial or maximal radius), and S ≥ 0 for R ≤ R0. This
form ensures that entropy increases as the system moves closer to M , consistent with the heating effect
discussed earlier.

The entropy gradient is then given by:

dS

dR
= −kBm

R
.

3



Combining this with the temperature field T (R) = GM
kBR yields an entropic force via:

F = T (R) · dS
dR

.

Substituting both expressions:

F =

(
GM

kBR

)
·
(
−kBm

R

)
= −GMm

R2
.

This result reproduces Newton’s inverse-square law of gravitation:

F = −GMm

R2
,

where the negative sign denotes attraction toward the mass M .
Importantly, this derivation is entirely classical. It does not rely on microscopic information stor-

age, holographic screens, or quantum field effects. Instead, it interprets gravity as a thermodynamic
consequence of energy flow and entropy gradients in a system with negative heat capacity.

The result also highlights the structural similarity between gravity and entropy-driven diffusion:
both arise from gradients in thermodynamic potentials. In this case, the gravitational force emerges
not from geometric curvature but from a classical tendency of the system to maximize entropy while
conserving total energy.

In the next section, we will analyze this process dynamically by examining how entropy changes
during free fall.

6 Entropy Flow in Free Fall

Up to this point, we have treated entropy and temperature as static functions of position. However,
the free fall of a test mass m in a gravitational field is a dynamical process. To describe how entropy
evolves over time, we consider the entropy flow:

dS

dt
=

dS

dR
· dR
dt

,

where v = dR
dt is the radial velocity of the test mass.

Using the entropy gradient derived earlier,

dS

dR
= −kBm

R
,

we obtain:
dS

dt
= −kBm

R
· dR
dt

.

For a freely falling object approaching the central mass, the radial velocity is negative (dRdt < 0),
so:

dS

dt
> 0.

This result confirms that the entropy of the system increases during free fall — even in the absence of
friction or external dissipation. The system is thermodynamically active simply due to the gravitational
work done on it.

From a classical thermodynamic standpoint, this entropy production reflects an internal energy
redistribution: as potential energy is converted into kinetic energy, the system’s internal degrees of
freedom respond by increasing temperature. If the system has negative heat capacity, the result is
self-heating — as already discussed.

This dynamical formulation reinforces the idea that gravity induces an entropic evolution rather
than a geometric deformation. The system accelerates because entropy increases along its path — not
because spacetime tells it to move.

The elevator, in this view, becomes an entropy engine. It converts position-dependent gravitational
work into thermal activity, governed by classical thermodynamic principles. The next section will
compare this framework with other models of gravity, including Jacobson’s thermodynamic derivation
and Verlinde’s entropic force.

4



7 Comparison with Other Models

The approach presented here is situated within a growing class of models that describe gravity not as
a fundamental interaction, but as an emergent thermodynamic phenomenon. We now compare it to
two closely related but conceptually distinct frameworks: Jacobson’s derivation of Einstein’s equations
from local thermodynamics, and Verlinde’s entropic gravity scenario based on holographic information.

Jacobson’s Local Thermodynamics

In his seminal 1995 paper [2], Ted Jacobson showed that Einstein’s field equations can be derived from
a local application of the Clausius relation:

δQ = T dS,

applied to local Rindler horizons. In Jacobson’s framework, gravity arises from the flow of energy
across causal horizons, interpreted as heat. His model links spacetime geometry to thermodynamic
response functions and implies that curvature is a statistical manifestation of microscopic degrees of
freedom.

Our approach shares Jacobson’s starting point — the thermodynamic identity — but simplifies the
setting: we avoid microscopic assumptions, quantum fields, and local horizons. Instead, we focus on a
compact test system in a gravitational potential and show that the classical behavior (i.e., Newton’s
law) follows from macroscopic thermodynamic principles alone, assuming negative heat capacity.

Verlinde’s Entropic Gravity

Verlinde proposed in 2011 [1] that gravity arises from the entropic tendency of information encoded on
holographic screens. When a test particle moves toward such a screen, its change in entropy generates
a force:

F = T
dS

dx
.

This model introduces a microscopic informational layer and relies on the holographic principle, linking
gravitational dynamics to changes in data representation on boundary surfaces.

In contrast, our framework is purely classical and does not require holography or information-
theoretic assumptions. The entropy we use is macroscopic and continuous, associated with energy and
temperature fields rather than discrete bits. Nevertheless, both models arrive at the same inverse-
square force law — suggesting that the entropic picture may be more general than its specific realiza-
tions.

This Work: A Classical, Macroscopic Thermodynamic Model

What distinguishes our model is its minimalism: we assume no microscopic substructure, no curvature,
and no quantum effects. We treat gravity as a macroscopic thermodynamic response in a system with
negative heat capacity. The key idea is that energy loss leads to self-heating, which generates an
entropy gradient. This gradient, when combined with a classical temperature field, yields a force law
consistent with Newtonian gravity.

Specifically, we define a temperature field

T (R) =
GM

kBR

and an entropy function

S(R) = kBm ln

(
R0

R

)
,

from which the gravitational force arises as

F = T (R) · dS
dR

= −GMm

R2
.

This model may thus be viewed as a bridge between Jacobson’s local thermodynamic gravity
and Verlinde’s entropic force scenario — offering a classical, accessible, and experimentally intuitive
perspective on the same underlying principle.
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8 Outlook — The Gaussian at the Heart of Reality

The model developed in this work began with a simple question: can gravity be understood as a purely
classical thermodynamic effect? By considering a freely falling thermometer and invoking the notion
of negative heat capacity, we showed that entropy gradients can reproduce the inverse-square law of
Newtonian gravity — without invoking curvature, holography, or quantum fields.

But this classical picture fits into a larger conceptual framework that connects thermodynamics,
information theory, and spacetime itself. In previous work [9], we proposed that both quantum mea-
surement and gravitational interaction may emerge from a common structure: a dynamically active
event horizon (EH) field Φ that encodes an entropic potential with a Gaussian profile.

This structure appears not only in cosmology [8], where the expansion of space can be interpreted
as a thermodynamic smoothing process (dS → 0), but also in quantum mechanics, where measurement
outcomes align with statistically permitted ”channels” in a global entropy landscape.

In both contexts, the Gaussian distribution plays a central role:

• In thermodynamics, it represents the state of maximal entropy under minimal assumptions — a
natural equilibrium configuration.

• In quantum theory, it defines the statistical background against which measurement projections
are realized.

• In gravity, as shown here, it defines the shape of the entropy gradient that drives motion toward
thermodynamic equilibrium.

This suggests a deeper principle: the fundamental processes of nature — measurement, motion,
and expansion — may all reflect a common statistical tendency toward entropic neutrality, modeled by
the Gaussian form.

Seen in this light, the elevator thought experiment is more than a teaching device. It is a window
into the statistical structure of reality. Whether in the macroscopic heating of a falling system, the
projection of quantum states, or the large-scale geometry of the universe, the same mathematical logic
seems to reappear: the Gaussian, as nature’s preferred distribution, governs what is probable, what is
stable, and ultimately, what is real.

Future work may further explore this connection — for instance, by reformulating path integrals
as entropic projection sums, or by identifying experimental systems in which entropic gradients and
Gaussian structures visibly influence classical dynamics. If successful, such developments could unify
the domains of thermodynamics, quantum theory, and gravity under a single statistical principle.

9 Discussion and Challenges

Our macroscopic exploration of entropic gravity provides an intuitive perspective on the equivalence
principle, interpreting gravitational attraction as a thermodynamic effect driven by gravitational work
and negative heat capacity (C < 0). This aligns conceptually with Jacobson’s thermodynamic frame-
work [2], where gravity emerges from energy and entropy dynamics, yet we pursue a fully classical
path without quantum assumptions. Its strength lies in its accessibility: employing a temperature
field T = GM

kBR and an entropy gradient dS
dR = −kBm

R , we recover Newton’s law without recourse to
holographic screens, as in Verlinde’s approach [1], or spacetime curvature. Grounded in gravitational
work, this ties to established physics like the virial theorem’s role in bound systems [?], enhancing its
conceptual appeal.

Challenges persist, however. Assigning C < 0 to a single test mass m in M ’s field is uncon-
ventional—while the virial theorem justifies C < 0 for self-gravitating systems, its extension to an
individual test mass lacks direct evidence. We propose that gravitational work (∆U < 0) mirrors an
energy loss akin to a ‘negative acceleration,’ where the mass-energy relation E/c2 = m suggests a
thermodynamic shift: as energy decreases, temperature rises (∆T > 0), consistent with C < 0. A
test mass without intrinsic acceleration lacks a Rindler horizon, implying T originates solely from M ’s
gravitational field, akin to Jacobson’s local horizons [2]. The field T = GM

kBR finds conceptual support
in gravitational blueshift—photons gain energy (∆E > 0) nearer M—though its classical thermal role
for m remains hypothetical. A central question is how this energy loss (∆U < 0) becomes thermal
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(∆T > 0)—classically, it converts to kinetic energy, necessitating further exploration of this ther-
modynamic transition. These points frame our work as a discussion, open to refinement. This is a
conceptual lens—not a settled theory, but a plausible thermodynamic view of gravity..
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