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Abstract

Dirac’s Hamiltonian, focused on electrodynamics, lacks energy terms for the weak and
strong forces, limiting its applicability to the full Standard Model. Building on Nige Cook’s
critique and a renormalization approach (https://nigecook.substack.com/p/axiomatic-basis-
for-quantum-field-fe6), where the bare core electromagnetic coupling (α = 1) is reduced to
the low-energy coupling (αlow ≈ 1/137.036), with the difference α − αlow accounting for
energy converted into mass and other forces, we propose a comprehensive Hamiltonian that
includes all Standard Model forces, with total energy conserved in quantum field theory
(QFT). This approach, supported by a geometric mean method for coupling constants and
mixing angles (viXra:1111.0111v1), is integrated into Peter Woit’s geometric framework
(arXiv:hep-th/0206135), using Clifford algebras to represent energy sharing and flavor mix-
ing geometrically. We explore predictions for mass, couplings, and mixing angles, offering a
unified description of particle interactions.

1 Introduction

Dirac’s Hamiltonian, derived from the Dirac equation, describes the relativistic dynamics of an
electron in an electromagnetic field but is limited to electrodynamics (QED):

H = ~α · (~p− e ~A) + βmc2 + eA0,

where ~α and β are Dirac matrices, ~p is the momentum, ~A and A0 are the electromagnetic
potentials, e is the charge, and m is the mass. This formulation neglects the weak (SU(2)) and
strong (SU(3)) forces, and its energy terms are incomplete for a quantum field theory (QFT)
description.

Nige Cook’s Substack post [1] critiques this simplicity, proposing that the bare core elec-
tromagnetic coupling (α = 1, unshielded, high-energy) is reduced to the low-energy coupling
(αlow ≈ 1/137.036, shielded, IR cutoff), with the difference α− αlow converted into short-range
effects like mass, weak, and strong forces. This renormalization approach, detailed in a geomet-
ric mean method for coupling constants and mixing angles [2], suggests a more comprehensive
Hamiltonian that includes all forces, with total energy conserved in QFT. We extend this idea
into Peter Woit’s geometric framework [3], using Clifford algebras to represent energy sharing
and flavor mixing, and explore predictions for Standard Model parameters.

2 Critique of Dirac’s Hamiltonian

Dirac’s equation in an electromagnetic field is:

(iγµ(∂µ + ieAµ)−m)ψ = 0,
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where γµ are the Dirac matrices, Aµ = (A0, ~A) is the electromagnetic four-potential, and ψ is
the fermion field. The Hamiltonian is:

H = ~α · (~p− e ~A) + βmc2 + eA0,

with ~αi = γ0γi, β = γ0, and ~p = −i~∇. This includes:

• Kinetic energy: ~α · ~p,

• Rest mass energy: βmc2,

• Electromagnetic interaction: −e~α · ~A+ eA0.

Limitations:

• Electrodynamics Only: It only accounts for the electromagnetic force (U(1)), neglecting
the weak (SU(2)) and strong (SU(3)) forces.

• First Quantization: It treats the wavefunction as a classical field, missing QFT effects
like virtual particle exchange.

• Energy Terms: It lacks energy contributions from other forces and does not explicitly
enforce energy conservation across all interactions.

3 Renormalization Approach to Energy Redistribution

Cook [1] proposes that the bare core electromagnetic coupling (high energy, unshielded) is α = 1,
while the low-energy (IR cutoff, shielded) coupling is αlow ≈ 1/137.036. The difference:

α− αlow = 1−
1

137.036
≈ 0.9927,

represents the fraction of electromagnetic charge energy converted into short-range effects, in-
cluding:

• Mass: Virtual particle interactions contribute to particle masses via self-energy correc-
tions.

• Weak and Strong Forces: Energy is transferred to the weak (SU(2)) and strong (SU(3))
forces.

• Mixing Angles: The energy redistribution influences interaction amplitudes, such as the
Weinberg angle and CKM matrix elements.

The viXra paper [2] formalizes this with a geometric mean method:

αw =
αlow

sin2 θw
, αs =

αlow

cos2 θw
,

where sin2 θw ≈ 0.231, yielding αw ≈ 1/31.75, αs ≈ 1/105.5. The energy fraction α − αlow is
distributed as:

Energyweak ∝ αw, Energystrong ∝ αs.
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3.1 Mass Contribution

The mass contribution from α − αlow must match observed masses. For the electron (me ≈
0.511MeV), the self-energy correction in QED is:

δme =
3αlow

4π
me ln

(

Λ2

m2
e

)

,

where Λ is the UV cutoff. In Cook’s framework, the total mass contribution from virtual
particles is proportional to α− αlow:

me ≈ me,0 + (α− αlow)× (scaling factor).

This requires detailed QFT calculations to determine the scaling factor, ensuring consistency
with experimental masses.

3.2 Coupling Constants and Mixing Angles

The weak and strong couplings are derived from the low-energy electromagnetic coupling:

αw =
αlow

sin2 θw
, αs =

αlow

cos2 θw
,

with sin2 θw ≈ 0.231. The CKM matrix elements (e.g., |Vus| ≈ 0.225) are derived from the
energy fractions, as shown in Fig. 35 of [2], where decay amplitudes are proportional to the
energy allocated to each interaction channel.

4 A Comprehensive Hamiltonian in QFT

The Standard Model Lagrangian includes all forces:

L = Lfermions + Lgauge + Lint + LHiggs,

where:

• Lfermions = ψ̄(iγµDµ −m)ψ, with:

Dµ = ∂µ + ieAµ + igwτ
aW a

µ + igsλ
aGa

µ,

where Aµ, W
a
µ , and G

a
µ are the gauge fields for U(1), SU(2), and SU(3), and τa, λa are

the generators.

• Lgauge = −1
4
FµνF

µν − 1
4
W a

µνW
a,µν − 1

4
Ga

µνG
a,µν , with:

Fµν = ∂µAν − ∂νAµ,

W a
µν = ∂µW

a
ν − ∂νW

a
µ + gwǫ

abcW b
µW

c
ν ,

Ga
µν = ∂µG

a
ν − ∂νG

a
µ + gsf

abcGb
µG

c
ν .

• Lint: Interaction terms.

• LHiggs: Higgs sector.
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The Hamiltonian density is:
H = πφ̇− L,

yielding:
H = Hfree +Hint,

with:

Hfree = ψ̄(iγi∂i +m)ψ +
1

2
(∂iAj)

2 +
1

2
(∂iW

a
j )

2 +
1

2
(∂iG

a
j )

2,

Hint = −eψ̄γµψAµ − gwψ̄Lγ
µτaψLW

a
µ − gsψ̄γ

µλaψGa
µ + (gauge self-interactions).

The total energy is:

E =

∫

d3xH,

and is conserved due to time translation invariance, ensuring energy sharing among forces
through interactions.

5 Extending Woit’s Geometric Framework

Woit’s framework [3] uses Cl(4, 0), with the spin representation:

Λ∗(C2) = Λ0(C2)⊕ Λ1(C2)⊕ Λ2(C2),

decomposing under U(2) ⊂ SO(4):

Component SU(2)×U(1) Charges Particles

Λ0(C2) (0, 0) νR
Λ1(C2) (1/2,−1) νL, eL
Λ2(C2) (0,−2) eR

Table 1: Lepton generation in Woit’s spin representation.

To include all forces:

• Embed SU(3): Extend to U(2)× SU(3), possibly using Cl(6, 0), where Spin(6) ∼= SU(4),
and project onto SU(2)×U(1)× SU(3).

• Geometric Energy Terms: Represent gauge fields as Clifford algebra elements, with
interaction terms as projections of spinors. The energy fractions αlow, αw, and αs are
encoded in the projection coefficients, with α− αlow determining the energy converted to
short-range effects.

• Mixing Angles: Derive the Weinberg angle and CKM matrix elements from the energy
redistribution, consistent with sin2 θw ≈ 0.231.

6 Critical Examination

• Consistency with Standard Model: The predicted couplings (αw ≈ 1/31.75, αs ≈
1/105.5) may represent bare couplings, consistent with renormalization group flow.

• Mixing Angles: The geometric derivation of sin2 θw ≈ 0.231 and CKM elements (e.g.,
|Vus| ≈ 0.225) requires experimental validation.

• Mass Prediction: The mass contribution from α−αlow ≈ 0.9927 implies that 99.27% of
the bare core electromagnetic energy is converted into mass and other forces, which must
match observed masses (e.g., me ≈ 0.511MeV, mW ≈ 80.4GeV).
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7 Conclusion

Using Cook’s corrected renormalization approach, where α−αlow accounts for energy converted
into mass and other forces, we extend Dirac’s Hamiltonian to include all Standard Model forces,
with energy conserved in QFT. Integrated into Woit’s framework, this offers a geometric inter-
pretation of energy sharing, mass generation, and flavor mixing, providing a unified description
of particle interactions.
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